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Abstract

In this thesis we present an implementation of, improvements of and experiments
on the two algorithms presented by Brodal et al. [1].

The algorithms calculate the triplet and quartet distances on two respectively
rooted and unrooted trees, of arbitrary degree. Both the triplet and the quartet
distances are measures for comparing the similarity between two trees.

The triplet distance calculation operates on sets of three leaves (triplets).
The quartet distance calculation operates on sets of four leaves (quartets). The
distances are defined as the number of triplets or quartets with different struc-
tures in the two trees.

The triplet distance calculation algorithm presented in [1] runs in time O(n ·
lgn). The space usage of the algorithm is O(n ·min(d1, lgn)), where d1 is the
degree of the first input tree, T1.

The quartet distance calculation algorithm runs in time O(max(d1, d2) · n ·
lgn) where d2 is the degree of the second input tree, T2. The space usage of the
algorithm is O(max(d1, d2) · n ·min(max(d1, d2), lgn)).

We improve the quartet distance calculation algorithm, reducing the runtime
to O(min(d1, d2) · n · lgn). This improvement furthermore decreases the space
usage to O(min(d1, d2) · n ·min(d1, d2, lgn)).

We furthermore significantly reduce the number of calculations needed to
calculate the quartet distance.

Through experiments we provide empirical evidence that both the algorithms
presented in [1], as well as our improvements, are feasible and perform well in
practice.

Work Method

The thesis, as well as the implementation it describes, is the product of an equal
share collaboration between the two authors.

The implementation was written via pair programming, and the text of the
thesis was written via “pair writing”. Virtually no sentence in this thesis is the
product of one author alone.
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Resumé

I dette speciale præsenterer vi en implementering af, forbedringer af og ekspe-
rimenter på de to algoritmer præsenteret af Brodal et al. [1].

Algoritmerne beregner triplet- og kvartetdistancerne på to henholdsvis ro-
dede og urodede træer af vilkårlig grad. Både triplet- og kvartetdistancerne er
mål for hvor ens to træer er.

Tripletdistanceberegningen arbejder på mængder af tre blade (tripletter).
Kvartetdistanceberegningen arbejder på mængder af fire blade (kvartetter). Di-
stancen er defineret som antallet af tripletter, eller kvartetter, med forskellig
struktur i de to træer.

Algoritmen til tripletdistanceberening præsenteret i [1] kører i tiden O(n ·
lgn). Algoritmens pladsforbrug er O(n ·min(d1, lgn)), hvor d1 er graden af det
første inputtræ, T1.

Algoritmen til kvartetdistanceberegning kører i tiden O(max(d1, d2) · n ·
lgn) hvor d2 er graden af det andet inputtræ, T2. Algoritmens pladsforbrug
er O(max(d1, d2) · n ·min(max(d1, d2), lgn)).

Vi forbedrer algoritmen til kvartetdistanceberegning. Dette reducerer kør-
selstiden til O(min(d1, d2) · n · lgn). Ligeledes formindsker denne forbedring
pladsforbruget til O(min(d1, d2) · n ·min(d1, d2, lgn)).

Vi reducerer dernæst markant antallet af beregninger, der er nødvendige for
at udregne kvartetdistancen.

Igennem eksperimenter fremviser vi empirisk evidens for at implementerin-
gen af både algoritmerne i [1], samt vores forbedringer, er teknisk mulige og yder
godt i praksis.

Arbejdsform

Dette speciale, og implementeringen beskrevet heri, er produktet af et ligeligt
samarbejde imellem de to forfattere.

Implementeringen blev skrevet ved hjælp af parprogrammering, og specia-
leteksten blev skrevet ved hjælp af “parskrivning”. Der er praktisk talt ingen
sætninger i dette speciale, der er produktet af en forfatter alene.
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Chapter 1

Introduction

Trees appear in many branches of science. One such branch is biology, where so-
called phylogenetic trees can be used to represent the evolutionary relationship
between species. There are, however, different ways to construct such trees from
the same data, or different datasets might be available. In both cases, a number
of different trees for the same set of species can be constructed. Given such trees,
it is useful to have a distance measure to compare how similar the constructed
trees are [2].

Distance measures can be quite natural in some settings, e.g. euclidean dis-
tance between two points. There is, however, no natural way to compare two
trees. For this reason, a number of distance measures have been proposed for
both rooted and unrooted trees.

For rooted trees these distance measures include for instance the triplet
distance [3].

For unrooted trees these distance measures include for instance the Robinson-
Foulds distance [4], the nearest-neighbor interchange metric [5] and the quartet
distance [6].

The Robinson-Foulds distance measure is defined for two unrooted trees with
the same set of unique leaf-labels. It enumerates the number of non-common
splits in the two trees. A split is defined as the removal of an edge in a tree,
effectively splitting the tree into two, represented by two sets of leaf-labels. The
number of non-common splits is the number of splits that can be performed in
one tree, but not in the other.

The Robinson-Foulds distance measure can be computed in linear time [7],
but is sensitive to outliers. For instance, changes to a few leaves might signif-
icantly influence the output of the algorithm. As an example, see Figure 1.1,
where moving a single leaf results in two trees that are 100% different.

The nearest-neighbor interchange metric,
[...] essentially counts the minimum number of nearest neighbor in-
terchanges required to change one tree to another.

Waterman and Smith [5]
It does, however, not distinguish between changes that affect the relationship
between many leaves, and changes that affect only a few leaves [8]. Furthermore
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78|123456

(c) Splits

Figure 1.1: An example of the Robinson-Foulds distance measure on two unrooted
trees. There are no common splits, and the distance is thus 100%. If the leaf labeled 8
is removed, the distance is 0%.

it has been shown to be NP-Complete [9], meaning that it is unknown whether
or not polynomial-time algorithms exist.

The triplet and quartet distance measures do not suffer from the drawbacks
outlined above [8]. They work by enumerating all subsets of leaves of size three
and four, respectively, and counts the number of different induced topologies.

There are
(n

3
)
and

(n
4
)
different subsets for triplet and quartets, respectively,

for a tree with n leaves. Simply enumerating all of the subsets, as is the case
for naive algorithms, will take time at least O(n3) or O(n4), and is thus not
practical for large input.

1.1 Triplets & Quartets

In this thesis we consider rooted and unrooted trees with n uniquely labeled
leaves. Given three leaves labeled a, b and c in a rooted tree, the subtree
induced by these leaves is denoted a triplet. Given four leaves labeled a, b, c and
d in an unrooted tree, the subtree induced by these leaves is denoted a quartet.

We say that a triplet is resolved if two leaves have a least common ances-
tor which is not shared with the remaining leaf. Reversely a triplet, where the
least common ancestor of all pairs of leaves contained in the triplet is the same,
is denoted as unresolved. For three leaves labeled a, b, and c, all four possi-
ble configurations are enumerated in Figure 1.2. Note that unresolved triplet
configurations only occur in non-binary rooted trees.

As for triplets, quartet can also be either resolved or unresolved, and all
four possible configurations are enumerated in Figure 1.2. Note that unresolved
quartet configurations only occur in unrooted trees of degree larger then three.
Unrooted trees of degree three will henceforth also be denoted as binary.

The two configurations, resolved and unresolved, give rise to four combina-
tions for a pair of input trees, T1 and T2. This is depicted in Figure 1.3.

If the induced topology of a triplet or quartet is the same in T1 and T2, it
is denoted as agreeing. Reversely, if the induced topology of a triplet or quartet
differ in T1 and T2, it is denoted as disagreeing. Thus, unresolved-unresolved
topologies always agree, whereas resolved-unresolved and unresolved-resolved

2



Resolved Unresolved

Triplet
(rooted)

c
a b

b
a c

a
b c a b c

Quartet
(unrooted)

a

b

c

d

a

c

b

d

a

d

b

c

a

b

c

d

Figure 1.2: All configurations for triplets and quartets.
T2

Resolved Unresolved

T1

Resolved
A: Agree
B: Disagree

C

Unresolved D E

Figure 1.3: Cases for topologies in the two trees.

topologies always disagree. Resolved-resolved topologies can either agree or
disagree.

Having established the terminology, we note that the triplet distance between
two rooted trees with the same set of leaf-labels, counts the number of triplets
having disagreeing topologies in the two trees. Equivalently, the quartet distance
between two unrooted trees with the same set of leaf-labels, counts the number
of quartets having disagreeing topologies in the two trees. In both cases, this
corresponds to the value B + C +D in Figure 1.3.

For binary trees the values C, D and E will equal zero since unresolved
triplets and quartets do not occur. This reduces the problem to finding B. This
problem is obviously simpler, and likely explains the large number of algorithms
only operating on binary trees (see Section 1.2).

One way to calculate the triplet or the quartet distance would be to find A
and E and subtract these numbers from

(n
3
)
for triplets and

(n
4
)
for quartets.

Another way could be to find B, C and D directly. In fact, a mixture of these
approaches are used in the algorithms presented in [1] (see Chapter 2).

To further illustrate, and give an intuition of, the triplet and quartet calcu-
lation, a naive algorithm is introduced in Section 1.1.1.

1.1.1 A Naive Algorithm

Naive algorithms work by enumerating all of the
(n

3
)
triplets or

(n
4
)
quartets in

the two input trees. They then find the induced topologies and compare them.
For triplets this can be done by simply starting a walk in each of the three

leaves of a triplet. Once two or more walks join, the induced topology has been
found. If two, and not three, walks join, the topology is resolved. If, on the

3
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Figure 1.4: Cases for quartets in a tree rooted in an arbitrary internal node.

other hand, all three walks join at the same node, the topology is unresolved
and will add to the distance.

Since the input tree can be arbitrarily unbalanced, finding the topology of
a triplet can take linear time, and as such the total time for enumerating all
triplets and finding their topologies is bounded by O(n4).

The process is repeated for both input trees, and A and E is found by count-
ing the number of agreeing topologies in the two trees. This can for instance
be done by representing the set of topologies as lists, sorting the two lists and
doing a linear scan over them. This takes time O(n3 · lgn) for a total runtime
for this naive triplet distance calculation algorithm of O(n4).

As an example of how large such a list is, consider a tree with 2,000 leaves.
Such a tree will have

(2000
3
)
triplets, which all needs to be saved in the above

mentioned list. Under the very optimistic assumption that each triplet can be
represented by one byte, such a list will use at least 1.2GB of space.

The quartet distance can be calculated in the same way, but using four leaves
instead of three. However, since the quartet distance is measured on unrooted
trees, each of the two trees are first rooted in an arbitrary internal node. This
can be done as described in Section 1.5.1. Again, if only two walks join, the
quartet is resolved (see Figure 1.4a), whereas if three or four walks join, the
quartet is unresolved (see Figure 1.4b). As a tree has

(n
4
)
quartets this naive

algorithm for calculating the quartet distance, by the same argument as above,
runs in time O(n5).

Again let us consider how large such a list is by looking at a tree with 2,000
leaves. Such a tree will have

(2000
4
)
quartets, which all needs to be saved in a

list. Under the same optimistic assumption as before, such a list will use at least
619GB of space.

As we have seen, the naive approach is not feasible for large n. As such,
other approaches are required, if we wish to calculate the triplet and quartet
distances for large input. The following section outlines some of the research in
this area.

1.2 Previous Work

In this section we outline some of the advancements in the area of triplet and
quartet distance calculation algorithms. This outline is also presented in Ta-
bles 1.1 and 1.2.
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Year Reference Runtime Binary Arbitrary

Naive algorithm O(n5) X X
1993 Steel and Penny [2] O(n3) X
2000 Bryant et al. [8] O(n2) X
2001 Brodal et al. [10] O(n · lg2 n) X
2004 Brodal et al. [11] O(n · lgn) X
2007 Stissing et al. [12] O(d9 · n lgn) X X
2011 Nielsen et al. [13] O(n2.688) X X
2013 Brodal et al. [1] O(max(d1, d2) · n · lgn) X X
2013 This thesis O(min(d1, d2) · n · lgn) X X

Table 1.1: Quartet distance calculation algorithms.

In 1993, an algorithm calculating the quartet distance in time O(n3) was
reported by Steel and Penny [2]. It is unclear whether or not the algorithm
operates on trees of arbitrary degree.

Around the turn of the millennium this was improved to O(n2) by Bryant
et al. [8], where, although the article states that, “[the] algorithm can be easily
extended to handle partially-resolved trees”, it only appears to work for binary
trees. The following year, in 2001, Brodal et al. [10] improved the quartet
distance calculation runtime to O(n · lg2 n) for binary trees. In 2004 this was
further improved to O(n · lgn) by the same authors [11].

The problem of calculating the quartet distance between trees of arbitrary
degree was, in 2007, addressed by Stissing et al. [12]. The authors gave an
algorithm for calculating the quartet distance between arbitrary degree trees in
time O(d9 ·n · lgn), where d is the maximum degree of any node in the two trees.
A few years later, in 2011, Nielsen et al. [13] introduced an algorithm that does
not depend on the degree of the input; calculating the quartet distance between
arbitrary degree trees in time O(n2.688). The somewhat atypical asymptotic
runtime for this algorithm is due to the usage of matrix multiplication.

Recently, in 2013, Brodal et al. [1] gave an algorithm for calculating the
quartet distance in time O(d · n · lgn).

In regards to the triplet distance calculation, an algorithm for binary trees
running in time O(n2) was given by Critchlow et al. [3] in 1996. More than a
decade later, the problem of arbitrary degree trees was addressed when Bansal
et al. [14] in 2011 introduced an algorithm for calculating the triplet distance of
arbitrary degree trees, also in time O(n2).

In 2013, Sand et al. [15] gave an O(n · lg2 n) time algorithm for calculating
the triplet distance for binary trees. The same year, Brodal et al. [1] gave an
algorithm for calculating the triplet distance of two trees of arbitrary degree in
time O(n · lgn).

It is the algorithms for calculating triplet and quartet distances presented
by Brodal et al. [1] that are the subject of this thesis.
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Year Reference Runtime Binary Arbitrary

Naive algorithm O(n4) X X
1996 Critchlow et al. [3] O(n2) X
2011 Bansal et al. [14] O(n2) X X
2013 Sand et al. [15] O(n · lg2 n) X
2013 Brodal et al. [1] O(n · lgn) X X

Table 1.2: Triplet distance calculation algorithms.

1.3 Existing Implementations

A number of the above mentioned algorithms have been implemented. These
include, but are not necessarily limited to, the following.

Mailund and Pedersen [16] implemented the algorithm in [10], calculating
the quartet distance for binary trees in time O(n · lg2 n). The authors further-
more stated that the algorithm is useful in practice. The source-code for the
implementation is available for download1.

In 2011, Nielsen et al. [13] documented the implementation of their algo-
rithm, calculating the quartet distance for trees of arbitrary degree in time
O(n2.688). The authors stated that it is “[...] the fastest algorithm so far for
computing the quartet distance between general trees”. The source-code has
been made available for download2.

Sand et al. [15], in 2013, presented an algorithm, and implementation, for
calculating the triplet distance between two binary trees in time O(n · lg2 n).
The authors concluded that the algorithm was useful in practice. While the
source code is not generally available at the time of writing, a copy has been
provided to us by the authors.

In Section 4.3.6 we present experiments on these algorithms, comparing them
to the algorithms described in this thesis.

1.4 Our Results & Overview of the Thesis

In this thesis we present our implementation (Chapter 3), evaluation (Chapter 4)
and improvements (Section 2.7 and Chapter 5) of the algorithms presented by
Brodal et al. [1].

The algorithms in [1] calculate the triplet distance between two trees of
arbitrary degree in time O(n · lgn) and space O(n ·min(d1, lgn)). This will be
the main topic of Chapter 2, and runtime and memory usage results will be
presented in Sections 4.3.3 to 4.3.6.

The algorithms in [1] furthermore calculate the quartet distance between two
trees of arbitrary degree in time O(max(d1, d2) · n · lgn) and space O(max(d1,

1http://cs.au.dk/~mailund/qdist.html
2http://birc.au.dk/software/qdist/

6
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d2) · n ·min(max(d1, d2), lgn)) where di is the maximum degree of any node in
the tree Ti.

By extending the algorithm in [1] we improve both the runtime and memory
usage bounds for the quartet distance calculation between two trees of arbitrary
degree. The new bounds are O(min(d1, d2) · n · lgn) and O(min(d1, d2) · n ·
min(d1, d2, lgn)) for time and space, respectively. These changes from a max-
imum to a minimum can be very significant for input consisting of one tree
with large degree and one tree with small degree. The quartet distance calcu-
lation algorithm, as well as our asymptotic improvement, will be the topic of
Sections 2.7 and 2.8. Furthermore, runtime and memory usage results will be
presented in Sections 4.3.1, 4.3.2, 4.3.5 and 4.3.6.

From Figure 1.3 we note that given either A or B and any of the other
values, both the triplet distance and the quartet distance can be calculated in
linear time (see Section 2.1).

Having reduced the asymptotic runtime and memory usage of the quartet
distance calculation, we furthermore decrease both the runtime and the memory
usage by a constant factor. This is achieved by calculating A and E, instead of
A and B as done by Brodal et al. [1] (see Chapter 5).

Using our implementation with the improvements introduced above, the
quartet distance between two balanced binary trees with 1,000,000 leaves, can
be calculated in approximately 1 minute and 45 seconds on the system presented
in Section 4.1.

To our knowledge, the results presented in this thesis are the current state
of the art.

1.5 Preliminaries

In this thesis we use a number of terms. These will be summarized below.
The terms are also explained when they first occur. This list can be used as a
reference, should the need arise.

– Triplets are induced subtrees of three leaves from a rooted tree.
– Quartets are induced subtrees of four leaves from an unrooted tree.
– T1 and T2 is used to denote the two input trees.
– d1 and d2 is used to denote the degree of T1 and T2, respectively.
– n is the number of leaves in each of the two trees, T1 and T2.
– Topology of a subtree denotes the structure of this subtree.
– Resolved denotes a triplet or quartet where all internal nodes in the in-
duced topology are binary or has degree ≤ three for triplets or quartets,
respectively.

– Unresolved denotes a triplet or quartet that is not resolved.
– Agreeing denotes the situation where two triplets or quartets have the
same induced topology in T1 and T2.

– Disagreeing denotes the situation where two triplets or quartets have dif-
ferent induced topologies in T1 and T2.

7



– v is generally used to denote the node in T1 that is currently being pro-
cessed.

– d is generally used to denote the degree of the input, but can also be used
to denote the degree of v. It will be clear from the context.

– c1, . . . , ck denotes the k children of v.
– Compatible is used to denote the triplets or quartets contributing to A, B
or E, depending on the context.

– HDT, Hierarchical Decomposition Tree, is a locally balanced tree built
atop of a rooted tree.

– C, G, I components are the components (i.e. nodes) of the HDT.
– Super root, for a G component, denotes the LCA of all leaves in the
subtree rooted at the G component.

– External path, of a C component, denotes the direct path in the original
tree, through the C component.

– 0-leaf, a single leaf, representing a contracted subtree where all nodes have
the color 0. The number of leaves in the subtree are saved as an integer
in the 0-leaf.

– Q denotes the denominator of the fraction used to determine if the largest
subtree should be extracted and contracted.

– Fully balanced trees are perfectly balanced, i.e. all leaves are at roughly
the same level in the tree.

– x% left-biased trees are trees, where a node with n leaves below it has x%
of these leaves in the first child, and the rest evenly distributed among the
rest of the children.

– Random describes the tree where all leaf-labels have been randomly per-
muted.

– Leaf moved describes the input for which T1 is a random tree and T2 is T1
with the leaf-labels 1 and 2 having switched places.

– α, β, γ, δ and ε are different configurations for quartet topologies. The
first three are defined in [1].

In all pseudo-code given, we use a C++-like syntax. This was chosen to stay
close to the actual implementation.

We furthermore note that the quartet distance is defined for unrooted trees,
but that the algorithm in [1] works on rooted trees. The first step of the quartet
distance calculation algorithm is therefore to root the tree.

1.5.1 Rooting an Unrooted Tree

An unrooted tree can be rooted by choosing an arbitrary non-leaf node as the
root of the tree. Assume that the trees consist of at least three nodes. Anything
less than four does not make sense in this context. Rooting can then be done
as follows.

To find an arbitrary non-leaf node, pick an arbitrary node, and check if it
is a leaf. If the node is not a leaf, a non-leaf node has been found and we can
continue. If the node is a leaf, it has an edge to another node. Since the tree
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has at least three nodes, this other node cannot be a leaf. A non-leaf node has
been found and we can continue.

Once a non-leaf node has been found, this can be used as the root, and the
entire tree can, in linear time, be rooted by a depth-first traversal of the tree.
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Chapter 2

Theory

In this chapter we describe the algorithms presented by Brodal et al. [1], as
well as our first variation of the quartet distance calculation algorithm. This
variation improves the asymptotic runtime for the quartet distance calculation
from O(max(d1, d2) · n · lgn) to O(min(d1, d2) · n · lgn).

In the naive algorithm sketched in Section 1.1.1, all triplets and quartets
where enumerated. This is obviously inefficient, and the algorithm presented
in [1] takes a different approach. Using the observation that we are not interested
in which triplets and quartets differ, but only how many there are, we can ignore
the specific triplets and quartets involved.

Recall that the goal of the algorithm is to calculate the value B + C + D
in Figure 1.3. This can be done in several different ways, depending on which
combination of the values A, B, C, D and E have been computed. First note
that A + B + C + D + E =

(n
3
)
and

(n
4
)
for triplets and quartets, respectively.

Secondly, note that A + B + C can be calculated by looking only at T1. This
sum is the number of triplets or quartets that are resolved in T1, no matter how
they occur in T2. Equivalently, A+B +D can be calculated by looking only at
T2. Both sums can be calculated in linear time using dynamic programming as
described in Section 2.1.

Having calculated the above mentioned sums, the problem of finding B +
C+D is reduced to, for example, finding either A and B or A and E. Knowing
A and E, the calculation in Equation (2.1) can be used to calculate the triplet
distance. This is the approach taken in [1].

For the quartet distance, Equation (2.1) can be used with
(n

3
)
replaced by(n

4
)
.
Knowing A and B the calculation in Equation (2.2) can be performed for

both the triplet and quartet distance. For the quartet distance, this is the
approach taken in [1].

Note that the dynamic programming step is only necessary when calculating
A and B, since the above mentioned sums are not used in Equation (2.1).

B + C +D =
(
n

3

)
−A− E (2.1)

B + C +D = (A+B +D)−A+ (A+B + C)−A−B (2.2)
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In the following sections we present the steps necessary for creating the al-
gorithms, such that they run in time O(n · lgn) and O(min(d1, d2) · n · lgn)
for the triplet and quartet distance calculation, respectively, as claimed in Sec-
tion 1.4. All time analysis up to, but excluding, Section 2.6, considers only the
triplet distance calculation. The effect on the algorithm by introducing quar-
tets, as presented in [1], as well as our first variation, is discussed in Sections 2.6
and 2.7. The memory usage is analyzed in Section 2.8.

2.1 Dynamic Programming
As mentioned above, the first part of the algorithm is to determine the sums
A+B +C and A+B +D, corresponding to the number of triplets or quartets
that are resolved in T1, no matter how they occur in T2 and vice versa. This is
done using dynamic programming, and can be calculated in linear time using a
post-order depth-first traversal of the two trees, one at a time.

Given a rooted tree T , the basic idea is to count the number of unresolved
triplets and quartets rooted at a node v of degree d. For quartets we first root
the tree arbitrarily in an internal node as described in Section 1.5.1. For a node
v, we let nv denote the number of leaves in the subtree rooted at v, and let nv

i

denote the number of leaves in the subtree rooted at the ith child of v.
To count the number of unresolved triplets and quartets rooted at a node v,

we calculate the values sv
i , pv

i , tvi and qv
i . Here sv

i designates the number of leaves
in the first i subtrees below the node v. Similarly pv

i , t
v
i and qv

i designate the
number of sets of two, three and four leaves, respectively, in the first i subtrees
of v.

The values sv
i , p

v
i , t

v
i and qv

i are computed as follows:

sv
i =

{
nv

1 if i = 1 ,
sv

i−1 + nv
i otherwise.

(2.3)

pv
i =

{
0 if i = 1 ,
pv

i−1 + nv
i · sv

i−1 otherwise.
(2.4)

tvi =
{

0 if i = 1 ,
tvi−1 + nv

i · pv
i−1 otherwise.

(2.5)

qv
i =

{
0 if i = 1 ,
qv

i−1 + nv
i · tvi−1 otherwise.

(2.6)

Having calculated these values, the number of unresolved triplets rooted at
v is the value tvd. Additionally, the number of unresolved quartets rooted at v is
the value qv

d + tvd · (n− nv). Here qv
d is the number of unresolved quartets where

all four leaves are distinct subtrees below v (see Figure 2.1a) and tvd · (n − nv)
is the number of unresolved quartets where one of the four leaves is not in the
subtree of v (see Figure 2.1b). For each node, v, these two values are propagated
towards the root.

Having calculating the above on T1, the algorithm can read off the value
D + E in the root node in constant time. The values read are the propagated

12



a b c d

v

(a)

d
a b c

v

(b)

Figure 2.1: The two types of unresolved quartets counted by the dynamic programming.

values tvd or qv
d + tvd · (n − nv), for triplets or quartets respectively. Subtracting

this from either
(n

3
)
or
(n

4
)
yields the sum A + B + C for triplets or quartets,

respectively. Equivalently, calculating the above on T2, the sum A+B+D can
be found.

2.2 Coloring

Having calculated A + B + C and A + B + D, [1] approaches the problem by
finding either A and E or A and B, for triplets or quartets, respectively. Note
that while the description below mentions only triplets, the same approach is
applied when calculating the quartet distance.

The approach taken is to see a triplet as anchored at a node v in T1 (see
Figure 2.2a). By looking at all triplets in T1 rooted at v, and locating their
counterparts in T2 given by the same set of leaf-labels, the triplets can be cate-
gorized as A,B,C,D or E. As all triplets are anchored in some node, traversing
all inner nodes of T1 will find the anchor points of all triplets.

This can be done by a recursive coloring of the trees, using the colors
0, 1, 2, . . . , d.

The first step towards making the approach work, is to link the leaves of T1
and T2 with bidirectional pointers, a with a, b with b etc. Using the bidirectional
pointers, the coloring of T2 can be updated in constant time when recursively
coloring T1.

The algorithm maintains the following invariant during a recursive traversal
of T1:

When entering a node v [in T1], all leaves in the subtree of v have
the color 1, and all leaves not in the subtree of v have the color 0.
When exiting v, all leaves in T1 have the color 0.

Brodal et al. [1]

c
a b a b c

(a) Triplets.

a b c d
c d

a b

d
c

a b

d
a b c a b c d

(b) Quartets.

Figure 2.2: Different anchorings of triplets and quartets. The anchor nodes are white.
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1 void recursiveColoring ( RootedTree v )
2 {
3 i f (v−>isLeaf ( ) )
4 v−>color (0 ) ;
5 else
6 {
7 v−>makeFirstChildLargest ( ) ; // Let c1 be the ch i l d o f v with the

l a r g e s t subtree , and l e t c2, . . . , ck be i t s remaining ch i l d r en
8 for ( int i=2; i <= k ; i++)
9 ci−>color ( i ) ;

10 // Leaves are now co l o r ed accord ing to v
11
12 findNumberOfNodesCompatibleWithColoring ( ) ; // Ignored f o r now
13
14 for ( int i=2; i <= k ; i++)
15 ci−>color (0 ) ;
16
17 recursiveColoring (c1 ) ;
18
19 for ( int i=2; i <= k ; i++)
20 {
21 ci−>color (1 ) ;
22 recursiveColoring (ci ) ;
23 }
24 }
25 }

Code 2.1: Pseudo-code for the recursive coloring. Adapted from [1].

We will argue that this holds when describing the algorithm below. To
initially satisfy the invariant, all nodes are colored 1 in the beginning of the
algorithm.

The base-case of the recursion is when the visited node is a leaf. In this case
the node is colored 0 and the recursion returns. This satisfies the last part of
the invariant.

For a recursive step, when visiting a node v in T1, let c1, . . . , ck, be the
children of v, where c1 is the root of the largest subtree. Leaves in a subtree
ci, i > 1, are recolored by the color i. Note that, by the invariant, the leaves
of c1 are already colored 1. At this point, another method is called to find the
number of triplets, categorized as A or E, contributed by the current coloring.
These are henceforth denoted as compatible with the coloring. For now we ignore
this step.

After this, all leaves in subtrees ci, i > 1, are recolored with the color 0 and
a recursive call on c1 is performed. Note that this satisfies the invariant that
upon entering c1, all leaves in c1 are colored 1 and all other leaves are colored 0.

Once returned from this call, the entire tree is colored 0 per the invariant.
Each child ci, i > 1, can now have their entire subtree colored 1 and be the
input to a recursive call, again satisfying the invariant. The pseudo-code for
this algorithm can be seen in Code 2.1.

Ignoring how to find the values A and E, the recursive coloring takes time
O(n · lgn). This is easily seen as a leaf is only recolored for a child ci of a node
v, if ci is not the largest child of v. As such, a leaf can only be recolored once
for each ancestor not being the root of the largest subtree of v, each of which

14



having size at most |v|2 . This effectively at least halves the number of leaves
rooted at each of these ancestors, leading to at most O(lgn) ancestors, and thus
O(lgn) recolorings, per leaf. With n leaves this yields a total recoloring charge
of O(n · lgn).

In the following sections we introduce the Hierarchical Decomposition Tree.
We furthermore show how to use this tree to find the number of triplets com-
patible with the coloring of a given node v in T1.

2.3 Hierarchical Decomposition Tree (HDT)

To find the number of triplets or quartets compatible with a coloring, [1] main-
tains a number of counters (see Section 2.5).

A naive approach to this counting scheme would be to count directly in T2.
As we shall see, however, this will not result in the desired asymptotic runtime.

Since T2 is given as input to the algorithm, we can make no assumptions as
to how balanced the tree is. A perfectly unbalanced tree (i.e. a very long chain)
is indeed valid input.

All counters in internal nodes are based on counters from their children.
As such, changing the color of one or more leaves, requires the counters of all
ancestors for these leaves to be updated. This means that even if just a single
leaf is recolored in T1, we might have to visit all nodes in T2. At least one leaf is
recolored in each step of the coloring algorithm, i.e. for each internal node of T1.
Since there are O(n) internal nodes, the algorithm takes O(n2) time if operating
directly on T2. Note that this is under the assumption that each node, given
updated information from their children, can be updated in constant time.

The problem above is that T2 can have height O(n). If we can guarantee a
smaller height, we can also obtain a faster runtime.

Let a locally balanced tree be a tree which is balanced in all internal nodes,
i.e. every subtree rooted at a node v has height O(lg |v|), where |v| is the number
of leaves in the subtree of v. A solution to the problem above is thus to construct
such a locally balanced version of T2. In [1], this is done using a Hierarchical
Decomposition Tree, or HDT, of T2. This is explained below.

2.3.1 Basic Idea

As stated above, an HDT is used to construct a locally balanced tree on top
of an unbalanced tree, T , of arbitrary degree. The basic idea is to let each
component in the HDT correspond to a set of nodes in the input tree, T , where
the leaves correspond directly to nodes in T . For this purpose [1] defines four
different types of components in an HDT (see Figure 2.3):

L A leaf in T .
I An internal node in T .
C A connected subset of nodes in T .
G A set of subtrees with roots being siblings in T .

15



L
I

C

G

Figure 2.3: Different types of nodes of an HDT (courtesy of [1]).

LC C G

L→C C→G

C1

C2
C

G1 G2 G G

IC

CC→C GG→G IG→C

Figure 2.4: Transformations and compositions of HDT nodes (courtesy of [1]).

While an L component corresponds to a leaf in T , these are only needed
during the initial construction of the tree, and will not occur in the final tree.

ForC components we let the direct path in the original tree, T , going through
the C component be denoted as the external path. C components are at most
allowed to have two edges in T , crossing the boundary of the component; one
going upwards and one going downwards. Neither of these edges are required.

For G components we let the LCA of all leaves in the subtree of the HDT
rooted at this component be denoted as the super root. G components are
downwards closed, meaning that there is no edge in T from a node inside the
component to a child, which crosses the boundary of the component.

Additionally, [1] defines five transformations and compositions over these
components, helping to ensure the structure of the HDT as well as enforcing
that the HDT is locally balanced. These are depicted in Figure 2.4. Since
each composition merges two components into one, we can view the merged
component as the parent of the two original components, giving rise to the
binary property of the HDT.

It should be noted, that during the construction of the HDT (see Sec-
tion 2.3.2), we operate over two different types of children, namely the original
relationship in T , and the new relationship between compositions. Additionally,
some of the invariants of a fully constructed HDT are allowed to be broken
during the construction.

An example of a rooted tree, and the HDT constructed based on the tree
can be seen in Figure 2.5.

16



I1

a I2

b I3

c d

(a) The original tree.

C

C2 C1

C ′2 C ′1

I1 a I2 b

I3 G

c d

(b) The result, an HDT.

Figure 2.5: Example of creating an HDT for a tree.

1 HDT preFirstRound ( RootedTree t )
2 {
3 i f (t−>isLeaf ( ) )
4 {
5 // Construct a new G component & mark as C −> G.
6 HDT hdt = new HDT ( G ) ;
7 setTypeGConvertedFromC ( hdt ) ;
8 return hdt ;
9 }

10
11 // Inner node ( i . e . an I component )
12 HDT component = new HDT ( I ) ;
13 // Loop over the ch i l d r en o f t , and convert them to HDT components
14 for (ci in t−>children )
15 component−>addChild ( preFirstRound (ci ) ) ;
16 return component ;
17 }

Code 2.2: Pseudo-code for the preFirstRound function of the HDT construction.

2.3.2 Construction

We know from Lemma 4.1 in [1] that the HDT can be constructed in linear time
in the size of the input tree and yields a locally balanced tree. The algorithm is
described below.

The HDT construction works by calling the function preFirstRound (see
Code 2.2) followed by calls, with a geometrically decreasing set of components
as input, to the function round (see Code 2.3).

The preFirstRound function converts the rooted input tree into an, ille-
gal, HDT. This is done by a depth-first traversal of the input tree. During
this traversal, all internal nodes are converted to I components, and all leaf
nodes are converted to G components which are marked as converted from C
components. This is in contrast to the algorithm presented in [1], which states
that leaves should be constructed as L components. However, the first thing
done after the preFirstRound function in [1] is to convert all L components
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into C components. Furthermore, the first step in each round is to convert all
downwards closed C components being children of I components into G com-
ponents. Thus all L components would be converted to C components, which,
being downwards closed children of I components, would then be converted into
G components. As such we can safely convert all leaf nodes in the input tree to
childless G components marked as being converted from C components. This
removes the need for the L component.

After converting applicable C components, the round function proceeds to
perform 3 types of non-overlapping compositions on the current HDT.

Composition 1 (GG→G). For an I component, with at least two G com-
ponents as children, the G components are paired arbitrarily, and a GG→G
composition is performed on each pair.

Composition 2 (IG→C). For an I component having at most one down-
wards open child, in [1] denoted non-forking, and where only one child is a G
component, an IG→C composition is performed.

Composition 3 (CC → C). A subpath of consecutive C components is
paired, the top-most with the second, the third with the fourth, etc., and a
CC→C composition is performed on each pair, resulting in a path of half the
length.

Recall that the construction of the HDT operates over two different types of
children, namely the original relationship in T , and the new relationship between
compositions. The three compositions described above are performed as long as
the root of the HDT has children from the original relationship in T .

Adding the HDT to the pseudo-code in Code 2.1 we end up with the pseudo-
code in Code 2.4.

2.3.3 The Cost of Recoloring

We now consider the cost of recoloring a set of leaves rooted at the node v (see
Section 2.2). From Lemma 2 in [11] we know that the union of k root-to-leaf
paths in a locally balanced, rooted, binary tree with n leaves contains at most
O(k + k · lg n

k ) nodes.
Thus, if each leaf rooted at a child ci, i > 1, of v pay

O

( |ci|+ |ci| · lg n
|ci|

|ci|

)
= O(1 + lg n

|ci|
) ≤ O(lgn) (2.7)

per recoloring, any component in the HDT with x colors below it has implicitly
already paid x and can thus update its O(x) counters for free, i.e. in constant
time.

Thus, if we pay O(lgn) per leaf-recoloring for updating the HDT, i.e. a lgn
factor for all O(n·lgn) recolorings, we have paid enough, yielding a total runtime
for the algorithm of O(n · lg2 n).
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1 HDT round ( )
2 {
3 // Composition 3 : CC −> C
4 i f ( type == C && childCount ( ) == 1 && firstChild−>type == C )
5 {
6 HDT newC = new HDT (C , this , firstChild ) ;
7 // I f the re are ch i ld r en , the re i s only 1 ( because o f IG −> C) .
8 // We r e cu r s e on that ch i l d and add the r e s u l t to our ch i ld− l i s t
9 i f ( firstChild−>hasChildren ( ) )

10 newC−>addChild ( firstChild−>getFirstChild ( )−>round ( ) ) ;
11 return newC ;
12 }
13
14 for ( i in children )
15 {
16 // Transform a l l I−ch i l d downwards c l o s ed C comp . in to G comp .
17 i f ( type == I && i−>type == C && i−>isDownwardsClosed ( ) )
18 setTypeGConvertedFromC ( i ) ;
19
20 // Composition 1 : GG −> G
21 i f (i−>type == G ) {
22 i f ( foundOneG ( ) ) mergeThisWithPreviousGAndSetFoundOneGToFalse ( ) ;
23 else setFoundOneG ( true ) ;
24 continue ;
25 }
26
27 i−>round ( ) ; // Recurse on the ch i l d
28 }
29
30 // Composition 2 : IG −> C
31 i f ( type == I && downwardsOpenChildren < 2 && gChildren == 1)
32 {
33 HDT newC = new HDT (C , this , lastG ) ;
34 for ( i != lastG in children ) newC−>addChild ( i ) ;
35 return newC ;
36 }
37
38 return this ;
39 }

Code 2.3: Pseudo-code for the round function of the HDT construction. Note that
children represents a list of, possibly merged, edges from the input tree, i.e. distinct
from HDT children of which there are always two for internal components and zero for
leaves.

While this is better than without the HDT, we are still a lgn factor from
the claimed runtime. Removing this additional lgn factor is the subject of the
next section.

19



1 void count ( RootedTree v )
2 {
3 i f (v−>isLeaf ( ) )
4 v−>color (0 ) ;
5 else
6 {
7 v−>makeFirstChildLargest ( ) ; // Let c1 be the ch i l d o f v with the

l a r g e s t subtree , and l e t c2, . . . , ck be i t s remaining ch i l d r en
8 for ( int i=2; i <= k ; i++)
9 ci−>color ( i ) ;

10 // Leaves are now co l o r ed accord ing to v
11
12 hdt−>query ( ) ; // Query the HDT fo r the number o f t r i p l e t s / quar t e t s

in T2 compatible with the c o l o r i n g
13 addHDTNumbersToGlobalCounter ( ) ;
14
15 for ( int i=2; i <= k ; i++)
16 ci−>color (0 ) ;
17
18 count (c1 ) ;
19
20 for ( int i=2; i <= k ; i++)
21 {
22 ci−>color (1 ) ;
23 count (ci ) ;
24 }
25 }
26 }

Code 2.4: Pseudo-code for the main-algorithm. Adapted from [1].

2.4 Extract & Contract
Per the analysis in Section 2.3.3, the runtime, when using one static HDT,
becomes O(n · lg2 n). This can, however, be improved to O(n · lgn) by ensuring
that the HDT is always of size O(|v|) when entering a node v on a call count(v).

Let us first assume that the HDT has size O(|v|) to see that this statement
holds true. In this case, every leaf can be charged

O

 k∑
j=1

1 + 1 + lg |vj |
|vj+1|

 , (2.8)

where we sum over all the ancestors where a leaf is recolored. The nodes vj and
vj+1 are two ancestors where recoloring occurred, possibly separated by nodes
where recoloring did not occur. The initial 1 is for the recoloring and 1+lg |vj |

|vj+1|
is for the |vj+1| root-to-leaf paths in a tree of size |vj | traversed when counting.

As, per Section 2.2, there is at most O(lgn) terms in the sum, and as

O

 k∑
j=1

lg |vj |
|vj+1|

 = O

 k∑
j=1

lg |vj | − lg |vj+1|

 (2.9)

= O(lg |v1| − lg |v2|+ lg |v2| − lg |v3| . . .− lg |vk+1|) (2.10)
= O(lg |v1| − lg |vk+1|) (2.11)
≤ O(lgn) , (2.12)
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the total runtime becomes O(n · lgn).

To achieve the needed O(|v|) size of the HDT when entering any node v in a
call to count(v), two extra functions, extract and contract, are added. The
function extract, given a color i, extracts a partial HDT consisting of the leaves
with this color, as well as additional information regarding the parts of the HDT
not otherwise included (see Section 2.4.1). The function contract takes a tree
that was previously extracted and, without changing the induced topology of
any real leaves, creates a smaller copy of this tree (see Section 2.4.3).

Before the recursive call count(c1), the tree is extracted and contracted if
the size of c1 is less than some constant fraction of the current HDT.

This can be done in O(|v|) time, and since it is only done if the size of c1 is
less than some constant fraction of the current HDT, every subsequent call is on
something of a fraction of the size (i.e. geometrically decreasing). The first call
will thus pay for all subsequent calls. As such, the next parts can safely ignore
the time this takes.

Just after the query to the HDT the extract and contract functions are
applied to all subtrees ci, i > 1, to produce a new HDT for each subtree, each
of size O(|ci|).

First an HDT is extracted in time O(|ci| + |ci| · lg |v||ci|) (see Section 2.4.1).
This produces an HDT of size O(|ci|+ |ci| · lg |v||ci|).

This HDT is then converted into the tree it represents (see Section 2.4.2),
in the same time, yielding a tree of the same size. This tree is then contracted
(see Section 2.4.3) to yield a tree of size O(|ci|), also in time O(|ci|+ |ci| · lg |v||ci|).
Finally an HDT of size O(|ci|) can be constructed in time O(|ci|).

All of these charges are bounded by the number of nodes in the union of
|ci| root-to-leaf paths in a locally balanced, rooted, binary tree with |v| leaves.
As such, all of this is paid for by charging O(1 + lg |v||ci|) from each leaf (see
Equation (2.7)).

This gives us the needed O(|v|) size of the HDT when entering any node v in
a call to count(v), and we thus finally achieve the claimed runtime of O(n·lgn).

The pseudo-code of the main algorithm, after the addition of extract and
contract, is given in Code 2.5.

The details of how to extract, convert an HDT into the tree it represents
and contract are given below.

2.4.1 Extracting

Extracting is done by, in the HDT, marking the O(|ci|+ |ci| · lg |v||ci|) root-to-leaf
paths of the |ci| leaves in the subtree ci of T1. Then, via a top-down traversal,
a modified copy of the HDT is created. In this copy, all unmarked subtrees
are replaced by new subtrees of size O(1). Each replacement-subtree represents
a subtree of the same size as the subtree replaced, where all leaves have been
colored 0. Each of these replacement-subtrees will later be converted into what
we call 0-leaves, which, as an integer, saves the number of leaves colored 0 in

21



1 void count ( RootedTree v )
2 {
3 i f (v−>isLeaf ( ) )
4 v−>color (0 ) ;
5 else
6 {
7 v−>makeFirstChildLargest ( ) ; // Let c1 be the ch i l d o f v with the

l a r g e s t subtree , and l e t c2, . . . , ck be i t s remaining ch i l d r en
8 for ( int i=2; i <= k ; i++)
9 ci−>color ( i ) ;

10 // Leaves are now co l o r ed accord ing to v
11
12 hdt−>query ( ) ; // Query the HDT fo r the number o f t r i p l e t s / quar t e t s

in T2 compatible with the c o l o r i n g
13 addHDTNumbersToGlobalCounter ( ) ;
14
15 for ( int i=2; i <= k ; i++)
16 hdti = constructHDT ( hdt−>extract ( i )−>goBack ( )−>contract ( ) ) ;
17
18 for ( int i=2; i <= k ; i++)
19 ci−>color (0 ) ;
20
21 i f ( hdt−>tooLarge (c1 ) )
22 hdt = constructHDT ( hdt−>extract (1 )−>goBack ( )−>contract ( ) ) ;
23
24 count (c1 ) ;
25
26 for ( int i=2; i <= k ; i++)
27 {
28 hdt = hdti ;
29 ci−>color (1 ) ;
30 count (ci ) ;
31 }
32 }
33 }

Code 2.5: Pseudo-code for the main-algorithm, extended with extract and contract.
Adapted from [1].

the represented subtree. The replacement-subtrees should be created in such a
way, that the resulting HDT is valid, i.e. a CC→C composition should still
have two C children, etc. This is, however, not a problem as any subtree can
be replaced by a valid subtree of size O(1). For instance a C component can
be replaced by an IG→C composition with a new I component and a new leaf
component.

All this is done in time O(|ci| + |ci| · lg |v||ci|) and produces an HDT of size
O(|ci|+ |ci| · lg |v||ci|).

2.4.2 HDT to Rooted Tree

An HDT represents a regular tree in a locally balanced and binary way. It is
possible to convert an HDT back into the tree it represents. We will in the
following section present how to perform this conversion.

The overall idea is to convert the HDT via a depth-first traversal. As each
component in the HDT is in the following only visited once, the runtime is linear
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in the size of the input. As the output tree consists of all leaves of the input
tree, the asymptotic size of the output tree is equal to that of the HDT.

Before continuing we note that there are only two relevant component types:
C and G components. As the I components are leaves in the HDT and will not
be recursed upon, they are not relevant here.

To facilitate the algorithm we define the following invariant for the two
component types.

Recursions on C components get no input. The recursion returns
two values, namely the uppermost node and bottommost node on
the external path of the component.
Recursions on G components get as input the super root of the
component, to which children add themselves. The recursion returns
nothing.

An HDT has a limited number of compositions. We will here go through all
compositions and explain how to interpret that compositions as a regular tree.
Because of the complicated inner workings of the HDT, this section is quite
technical. In an attempt to make things more clear, a small example of an HDT
is given in Figure 2.6a and the result of the conversion is given in Figure 2.6b.

Leaf. When reaching the leaf level, the component can simply be converted to
a regular tree leaf, and be added to the child-list of the parent given as input.
As a leaf is a G component, the input is given and the invariant is satisfied.

This step is illustrated in Figures 2.6a and 2.6b where the leaves labeled a,
b, c and d are present in both trees, having been simply converted.

GG→G. In this case we simply recurse on both children, giving both the
same input as this composition, and return nothing. This is correct as, per the
invariant, G components add themselves to the child-list of the input.

An example of this is the leaves labeled c and d which have added themselves
to the internal node created by the I component. These are all non-marked in
Figures 2.6a and 2.6b.

IG→C (possibly then converted to a G component). The I component
represents an internal node in the original tree, and as such a new tree-node is
created to represent this. We then recurse on the G component with this new
node as the input. This satisfies the invariant that recursions on G components
are being called with the super root of the component as the input.

Returning from the recursion, if the current component is a C component,
we return the new node as both the uppermost node and the bottommost node.
If, on the other hand, the current component is a G component, the new node is
added as a child to the input and we return nothing. In both cases, the invariant
is satisfied.

In Figure 2.6a the IG→C composition C ′2, the left- and bottommost subtree
consisting of three components, has been marked with green. The result of the
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(b) The result of the conver-
sion.

Figure 2.6: Example of converting an HDT into the tree it represents.

conversion, the root and the leaf labeled a, has also been marked with green in
Figure 2.6b. Another example, C ′1, of the same composition is marked with red
in both trees.

CC→C (possibly then converted to a G component). Recall the struc-
ture of the CC→ C composition from Figure 2.4. We first recurse on both
children. Neither is given any input, satisfying the invariant that recursions on
C components are called without input. Note that there will be an IG→C com-
ponent below each C component, responsible for creating new internal nodes.

The uppermost return value from the recursive call on C1 is added as a child
to the bottommost return value from the recursive call on C2. This is due to
C1 being below C2 in its entirety.

If the current component is a C component we return the uppermost return
value from C2 and the bottommost return value from C1 as the uppermost and
bottommost return value, respectively.

If, on the other hand, the current component is a G component, we add the
uppermost return value from C2 as a child to the input and return nothing. In
both cases, the invariant is satisfied.

In Figure 2.6a, the CC→C composition C2, the entire left subtree below
the root, has been marked with blue. Both children of this subtree are recursed
upon. The uppermost return value from the C ′1 child, marked with red, is added
as a child to the bottommost return value from the C ′2 child, marked with green.
The uppermost return value becomes the uppermost return value from C ′2 and
the bottommost return value becomes the bottommost return value from C ′1.

As can be seen from Figure 2.6b, everything in the subtree C1 has to go
below everything in the subtree C ′1. This is achieved as, after a recursive call in
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(a) Before contracting the tree.
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(b) After contracting the tree.

Figure 2.7: Contracting the tree. Notice that 0-siblings have been merged, binary chains
have been collapsed, and the 0-node marked by ♣ has not been collapsed as this would
change the induced topology.

C on both C1 and C2, the uppermost return value from C1 is added as a child
to the bottommost return value from C2.

Using the above we convert an HDT into the tree it represents. This allows
us to contract the tree.

2.4.3 Contracting

The contract function continuously merges nodes, without changing the in-
duced topology of the real leaves. This means that for all nodes, 0-leaf-siblings
are merged by replacing them with a single leaf, storing the total number of
leaves represented by the merged 0-leaves.

After merging siblings, all binary chains where each node in the chain has a
0-leaf child and a non-leaf child, are replaced by a single node representing the
chain. This node has two children, namely the real subtree of the bottom-most
node, and a single 0-leaf representing the sum of all previous 0-leaves in the
chain.

An example of an extracted rooted tree, and its contracted counterpart can
be seen in Figure 2.7.

2.5 Counters & Notation
To perform the counting in the HDT, a large number of counters and sums are
used. Each counter represents the number of sets of leaves with a specific topol-
ogy in the HDT-subtree rooted at the given HDT component. These counters
are then used in sums to find the values, A, B or E, needed for the triplet or
quartet distance calculation.

The counters presented in [1], as well as the sums utilizing these counters,
with a few errors corrected, are included in Appendix A. Furthermore, recall
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from Section 1.4 that we have improved the runtime of the quartet distance
calculation algorithm. This is done using additional counters and sums. The
motivation behind these is presented in Section 2.7, and the counters and sums
are included in Appendix B.

Counters appear as e.g. nX
i where X is the component type in which the

counter appears. When the component type is specified as X, the counter is
used for both C and G components. The subscript indicates the coloring and
topology of the set.

Each counter with an i in the subscript, is indexed by this color. As such,
the counter from before, nX

i , counts the number of leaves with the color i in
the HDT-subtree rooted at the component. As this counter is indexed, with
x colors in use below a component, this single counter actually represents x
counters, one for each color. This can be generalized to e.g. nX

• where • means
any color other than 0. This counter thus describes the number of non-0 colored
leaves below the component. As such, it can be viewed as an aggregate counter.
As this counter is not indexed, only one exists per HDT component.

The two can also be combined, e.g. nX
i• describes the number of pairs of

nodes, where one node is colored i, and the other is colored different from 0 and
i. For a C component, the nodes must furthermore be anchored on the external
path of the C component. For a G component, the nodes must furthermore be
in two distinct subtrees of the super root of the G component.

The descriptor is used like • but also excludes the value taken by •. For
instance, nX

• describes the number of pairs of nodes, where both nodes have a
color different from 0, and the two colors are distinct. As such, the descriptor

will never occur without the • descriptor. As for nX
i• , the nodes must be

anchored on the external path or be in two distinct subtrees of the super root,
for a C or G component, respectively.

The color 0 can also be used directly as a descriptor, and the counter nX
0i is

thus the number of pairs anchored as above, where one node in the pair has the
color 0, whereas the other has the color i.

For C components the notation ↑ is also used, e.g. nC
i↑•. Here it is required

that leaves colored i appear below leaves colored different from 0 and i (recall
the structure of the CC→C composition, see Figure 2.4).

Additionally, parenthesis are used to indicate that the nodes are not allowed
to be anchored on the external path, or in two distinct subtrees of the super
root, for a C or G component, respectively. Finally, in [1], brackets are used
when there are no requirements regarding the anchoring of the leaves.

All of the previous was introduced in [1]. We have further extended this
notation with the notation nX

•−i−j as a shorthand for the calculation nX
• −nX

i −
nX

j . This particular calculation results in the number of leaves in the subtree
rooted at this component, colored different from 0, i and j.

Some counters and sums have the symbol ? next to them. This indicates
that they are slower to calculate than the unmarked counters and sums. With
x colors in use below a component, these counters and sums will require the
processing of O(x2) counters.
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The ? occurs when the counter has two indexes or we need to sum over such
a counter. For instance nij has two indexes, i and j. The need to sum over such
counters occurs in the sums as well as counters where we need to synchronize
across component-boundaries. An example is the counter nX

•(i ), where the two
aggregates • and must be different and in two distinct subtrees. For instance,
in the GG→G composition, the counter needs to be rewritten as the sum, over
all colors j, of (n• − ni − nj) · (n(ij)), where each parenthesis is from a different
child of G.

Put differently, synchronizing across component-boundaries yields an im-
plicit double-index.

We note that none of the counters and sums used by the triplet distance
calculation (marked †), are marked with the symbol ?. Thus, if x colors are in
use below a component, onlyO(x) counters require processing and the runtime of
the triplet distance calculation becomes O(n · lgn) (see Sections 2.3.3 and 2.4).

2.6 Quartets
As per Sections 2.4 and 2.5 the triplet distance for both binary and arbitrary de-
gree trees can be calculated in time O(n · lgn). Calculating the quartet distance
instead follows the same principle, but requires more counters and sums. Some
of these counters have two indexes (be it explicit or implicit, see Section 2.5).

With two indexes on a counter, we need to process up to O(d2) counters
instead of only up to O(d) counters for single index counters. This yields an
additional d factor. These counters are the ones marked with the symbol ? in
Appendices A to C.

The d factor is given by the degree of the node in T1 everything is currently
colored according to. As each internal node in T1 is, at some point, the node
everything is colored according to, d becomes the maximum degree of any node
in T1.

When counting resolved quartet topologies, they occur in three configura-
tions, in [1] named α, β and γ (see Figure 2.8). This gives rise to nine different
combinations that must be handled when calculating A and B. The algorithm
in [1] reduces this to six by handling only the cases marked in Figure 2.8, swap-
ping T1 and T2 and redoing the calculation for the three missing symmetric
values. In this way, both input trees serve their turn as T1 and thus d becomes
the maximum degree for any node in the two trees.

The runtime for the quartet distance calculation, as presented in [1], thus
becomes O(max(d1, d2)·n·lgn). For binary trees this can be viewed as O(n·lgn)
as the degree is fixed, i.e. d1 = d2 = 2.
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Figure 2.8: Counted quartet configuration combinations for A and B in [1].

2.7 Improving the Bound
Recall that the quartet distance calculation algorithm between arbitrary degree
trees presented in [1] runs in time O(max(d1, d2) ·n · lgn). Also recall that max
is caused by swapping the two input trees. Furthermore recall that swapping is
only necessary as not all α, β and γ combinations are handled directly by the
algorithm presented in [1].

We improve the bound of the algorithm by handling the previously unhan-
dled cases directly. In doing so we remove the need for swapping the input
trees. Using the tree with the smallest maximum degree as T1 we thus achieve
a bound of O(min(d1, d2) ·n · lgn). The change from a maximum to a minimum
can, as we shall see in Section 2.8 and Figures 4.5 and 4.11b, be very beneficial
for both the running time and the memory usage. In regards to the memory
usage, however, note that when d1 = d2, the memory usage of this improvement
actually increases by a constant factor (see Figure 4.9b). It does however, even
in such a case, remove some of the obvious runtime overhead of running the
algorithm twice (see Figure 4.1a).

The counters and sums needed to handle the previously unhandled cases are
contained in Appendix B.

2.8 Memory Usage
Here we analyze the asymptotic memory usage of the algorithms presented in
this thesis.

Lemma 1. The space usage of the quartet distance calculation algorithm of
both [1] and our variations is O(d · n · min(d, lgn)). For [1], d = max(d1, d2),
whereas for our variations, d = min(d1, d2).

Proof. Two upper-bounds can be found for the space usage.
We first note that the HDT has O(lgn) height. As such, each leaf can

contribute its color only at each of the O(lgn) ancestors. At each such ancestor
it can, at most, be paired with d colors, totaling O(lgn · d) per leaf. As there
are n leaves, this yields an upper-bound of

O(d · n · lgn) . (2.13)

On the other hand, d is always an upper bound for the number of colors in
use in a component. There are O(n) components in an HDT built atop of a tree
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of size n, yielding an upper-bound of

O(d2 · n) . (2.14)

Combining these two upper-bounds yields a single upper-bound:

O(d · n ·min(d, lgn)) . (2.15)

Because of the extract and contract operations, additional, smaller, copies
can reside in memory. These copies are however only created when the size of
the copy will be some fraction of the original size, and only one top-to-bottom-
chain will exist at any one time, i.e. these copies are exponentially decreasing in
size and do not change the bound.

For [1], d = max(d1, d2), because the two input trees are swapped during
the algorithm. For our variations, d = min(d1, d2), as no swapping occurs, and
the tree with the smallest degree is forced as T1.

Corollary 1. The space usage of the triplet distance calculation algorithm of
[1] is O(n ·min(d, lgn)), where d = d1.

Proof. The proof follows the principle from Lemma 1. As colors are not paired
for the triplet distance calculation, there is no d factor in Equation (2.13),
making the first bound O(n · lgn). Equivalently, squaring does not occur in
Equation (2.14), and since the number of colors is only determined by T1, the
bound per node is O(d1). This yields a second bound of O(d1 · n).

Combining the first and second bounds yields the stated bound.

We note that using the input tree with the smallest degree d as T1, the mem-
ory usage for the triplet distance calculation algorithm is O(n·min(d1, d2, lgn)).

2.9 Similarities with Other Algorithms
Recall that the algorithm presented in [1] boils down to coloring the trees,
building HDTs, counting in these and using extract and contract.

The algorithms presented in [10, 11] for calculating the quartet distance of
binary trees in time O(n · lg2 n) and O(n · lgn) respectively, are also based on
these concepts. It should be noted that the former, however, does not extract
and contract, which accounts for the additional lgn factor. Note also that both
algorithms use counting based on polynomials.

The algorithm presented in [15] for calculating the triplet distance for binary
trees in time O(n · lg2 n) is also based on these concepts, although excluding
extract and contract, accounting for the additional lgn factor.

Per the above, the algorithm in [1], as well as our improvements, can be seen
as a generalization and evolution of the algorithms in [10, 11, 15].
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Chapter 3

Implementation

We have implemented the triplet and quartet distance calculation algorithms
as presented in [1] as well as our variations (see Section 2.7 and Chapter 5).
The implementation was done in plain C++ with cross-platform compatibility
in mind, although non-standard gcc features can be enabled at compile-time
(see Section 3.5). The implementation has been tested on both Windows and
Linux machines.

The purpose of our implementation was to address the following questions:

– The quartet distance calculation algorithm in [1] seems to have very large
constants, e.g. we need to calculate up to 2d2 + 79d+ 22 variables for each
component in the HDT. For a binary input this is up to 188 variables per
HDT component. This leads to the question of whether or not [1] has any
practical value?

– The previous related implementations for binary trees [15, 16] only use
one static HDT for T2, i.e. the implementations do not try to contract the
HDT of T2 during the recursion. Theoretically this should lead to a lgn
factor overhead in [15, 16] compared to [1] (and [11]). Does the added work
of contracting the HDT during recursion outweigh the saved lgn factor in
practice?

– Our asymptotic improvement, as discussed in Section 2.7, adds up to 5d2+
18d + 7 variables to each HDT component, for a total of 7d2 + 97d + 29
variables per HDT component. For a binary input this becomes up to 251
variables per HDT component. This leads to the question of whether or
not using this variation compared to the algorithm presented in [1] has
any practical advantages?

Before attempting to answer these questions we will go through some of the
details of the implementation.

3.1 Representation of Counters in the HDT
To store the variables in each HDT node, a natural first step is to use a number
of arrays, each of size d. This, however, is not a good idea. In the worst case
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the degree, d, can equal n. Thus, if T1 is a single node with n leaves directly
below the root, each of the O(n) nodes in the HDT of T2 will have arrays of size
n yielding at least a quadratic space usage for the triplet distance calculation.

In addition, the time-analysis of the algorithm only holds when the updating
of nodes only handles the colors actually in use below it. When using arrays,
this is not possible and what should have been constant time is now instead
linear time in d.

The solution we adopted was to use linked lists so that only the colors in use
are actually handled. This results in a guarantee of the claimed runtime and
space usage.

3.2 Extract & Contract
As mentioned in Section 2.4, one of the cornerstones of the algorithm is the two
functions extract and contract. The process of extracting and contracting is
three-step. The extract function creates a copy of the input HDT with non-
marked sub-trees replaced with 0-leaves representing one or more leaves that
have been cut off. The extracted copy of the HDT is converted into the tree
it represents, and finally the contract function takes this input and returns
the minimal tree with the same induced topologies for the given coloring. To
reduce the overhead of multiple traversals of the HDT, we have combined the
extract and goBack functions into a single function, which, given an HDT with
marked leaves, outputs the extracted and converted HDT as a rooted tree. This
effectively turns the three-step process into a two-step process.

In our implementation, extracting and contracting can be enabled or disabled
at compile-time. If disabled, the asymptotic runtime will incur a lgn factor
penalty (see Sections 2.3 and 2.4). If enabled, the non-largest children are
always extracted and contracted. The largest child, however, is only extracted
and contracted when the size of this child is at most some fraction of the size
of the current HDT. The fraction can be varied for different results. We have
experimentally found the implementation to run faster, when the denominator
of the fraction, herein named Q, is around 20,000. The value can be modified
at compile-time.

3.2.1 Different Values for Q

We have tested the implementation on a randomly generated binary input con-
sisting of two trees with 100,000 leaves each. The input was run with different
values of Q on two different systems. System 1 is the same system as the one
used in the experiments, and is outlined in Section 4.1. The runtimes for this
system are depicted in Figure 3.1a. System 2 is a Windows 7 system, with a
quad-core 3.3GHz 64-bit Intel Core i5 2500K processor and 16GB of RAM. The
runtimes for this system are depicted in Figure 3.1b.

In Figure 3.1a the runtimes are lower with contract enabled compared to
having contract disabled, even with Q set to 10. This is not the case in Fig-
ure 3.1b. As such, we note that the effects of different values of Q are somewhat
machine dependent. However, a clear tendency is evident in both plots, and
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Figure 3.1: Runtimes with different values of Q as discussed in Section 3.2.1. Input
trees had 100,000 leaves. Trees are the same for both runs. The x and y axis are the
values of Q and runtime in seconds respectively.

even though the system in Figure 3.1b is generally slower than the system in
Figure 3.1a, the optimal value of Q seems to be approximately 20,000 in both
cases.

As a result of the above, all experiments in Chapters 4 and 5 have been run
with Q set to 20,000.

3.2.2 Not Always Contracting the Non-Largest Children

Setting Q quite high, i.e. contracting the largest child infrequently, performed
better than setting Q low. As such, an obvious test would be to find out if
limiting the frequency at which the non-largest children are contracted yields a
similar result.

Per the algorithm in [1], the non-largest children are contracted on every
recursion. As an example, if the algorithm visits a binary node where each child
has the same size, one will be contracted whereas the other, due to the value of
Q, might not.

This does have a few benefits. The HDT of the currently visited node, can
be deleted as soon as the largest child is contracted. This is not the case when
not contracting the non-largest children, as the HDT is then potentially in use
above this node.

In the HDT constructed after the contract function, the counters associated
with leaves outside of the subtree for which the HDT was created, do not have to
be updated when recoloring of these leaves occur. When not always contracting
the non-largest children, the non-contracted HDT associated with such a child,
is, however, affected by recolorings outside of the subtree. As such, a large
number of the counters of this, larger, HDT will have to be updated.

As it is unclear if the approach will benefit the runtime or not, we partially
implemented this variation. We soon found it to be significantly slower though,
and therefore discarded the changes.
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3.3 Debugging

For any non-trivial software implementation, errors are unavoidable. The im-
plementation documented here was no exception, and, as such, we utilized a
number of techniques that helped us in the process of resolving such errors.

The first, and perhaps most used, technique was that of automatic testing.
In our case we early on implemented a naive algorithm, and generated a large
number of random inputs. We then wrote a test system, which ran the two
implementations, i.e. the naive algorithms and the algorithms from [1], against
each other. Recall, however, that the naive algorithms runs in time O(n4) and
O(n5) for triplets and quartets respectively. As such the generated trees had
to be rather small; the largest trees we tested using the naive algorithm had
80 leaves. As we also had previous implementations available (see Section 1.3),
these helped test larger trees. This allowed us to quickly realize if a change in
the implementation introduced errors.

In extension of the above, we found it to be too tedious, if not impossible, to
analyze an error by hand when running on input larger than around 10 leaves.
We therefore wrote a system which continuously generated small random input,
compared the output of the two algorithms, and reported an error if the outputs
differed. This allowed us to quickly identify small test cases, where an error
presented itself.

This left the question of finding the bug in the code. We eased this process
somewhat by extending the naive algorithm to also report data relevant to the
algorithm described herein.

As explained in Section 2.6, when counting resolved quartet topologies, they
occur in three configurations, in [1] named α, β and γ. As these three configura-
tions are counted in different calculations, it would be useful to know how many
of each combination should be counted at specific points, during the execution
of the implementation.

We extended our naive algorithm to, when outputting all quartets, also
output the configuration (α, β or γ) of the quartet, as well as the anchor node
of the particular configuration. With this data available, we wrote a script
that, given one such list for each tree, outputs the agreeing (i.e. A and E) and
disagreeing (i.e. B) combinations, and the labels of their anchor nodes.

With this information, it became possible to easily compare the values at
each recursion step to these expected results. If a discrepancy occurred we
had found the anchor of a bug-occurrence. With the configuration information
we also knew which result each configuration-combination sum should return,
easing the debugging further.

Lastly, working with trees can be quite abstract, and being able to visualize
a tree can be very useful when debugging. For this reason we wrote functions
that allowed us to print trees as files, which could then be visualized by external
software. These functions have also been used to output trees for this thesis, for
instance Figures 2.5 and 2.7.
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In total, using the above mentioned methods, it was possible to pin-point
when and where a bug presented itself, easing debugging significantly.

3.4 Optimizations

Since the initial implementation of the algorithm we have identified a number of
optimizations. For the following, memory usage is based on polling 10 times per
second. This implies that the reported value for the memory usage is subject
to a degree of uncertainty, especially on small input. All measurements were
taken on runs for the non-extended quartet distance calculation algorithm, as
described in [1], with Q set to 10. This value was chosen arbitrarily at the
time. Note that, as stated in Section 3.2, increasing Q to 20,000 decreases
the runtime further. Note also that a bug in the contract function, affecting
the speed, but not the correctness, of this function, was found and fixed after
this step. We do not expect this to have influenced the overall trend of the
optimizations. If anything, the optimizations would likely have given larger
speed boosts. For instance, an improvement of τ seconds with the bug would
likely give the same τ seconds improvement without the bug. As the contract
function became faster by fixing the bug, the overall runtime of the program
would also decrease, increasing the speed boost percentage when decreasing the
runtime with τ seconds.

The algorithm hints at creating contracted copies of the HDT rather early.
To create a contracted copy, as described in Section 2.4, we convert the extracted
HDT back to the tree it represents, and contract this tree before constructing
a new HDT. This allows us to extract and contract early in the process, but
postpone the construction of the updated HDT until it is needed. Since the HDT
uses more memory than the tree it represents, this reduces the memory usage.
We observed a reduction in memory usage of 25-50%, with approximately 50%
as a relatively stable reduction on large input. As an added effect, the runtime
was decreased by 4-10%, less on large input. This optimization is documented
in Columns 2 and 3 in Tables 3.1 and 3.2.

Initially we used the standard C++ data structure vector to hold child
pointers. As random-access is not needed, we could replace this by a purpose-
built linked list. In doing so, we observed a 6-9% increase in the speed of the
implementation when tested on binary trees. The memory usage also decreased
slightly. This optimization is documented in Columns 3 and 4 in Tables 3.1
and 3.2.

Our final optimization was a more clever memory allocation. The basic
idea was to allocate each datatype in a large pool and subsequently releasing
memory back to this pool. This reduced the number of allocations needed,
giving an 18-25% increase in the speed of the program. The memory usage,
however, increased with 10-20% on large input, and by more than 100% on
small input. We expect at least some of this to be due to the reported memory
usage being based on polling. When releasing memory back to the operating
system, which was the case before this optimization, the polling might by chance
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# Leaves Initial measure Opt. 1 Opt. 1 & 2 Opt. 1, 2 & 3

1.0 · 103 17.29 10.49 7.39 11.09
1.6 · 103 21.75 15.91 10.90 22.69
2.5 · 103 41.69 24.27 19.31 31.80
4.0 · 103 69.19 37.62 35.42 46.24
6.3 · 103 107.20 58.79 56.40 67.57
1.0 · 104 185.52 92.14 87.43 102.83
1.6 · 104 292.91 144.37 132.21 158.46
2.5 · 104 462.94 228.70 206.70 246.37
4.0 · 104 735.15 362.10 354.03 390.33
6.3 · 104 1,162.43 575.43 544.87 613.91

Table 3.1: Memory usage in MB with different levels of optimization.

# Leaves Initial measure Opt. 1 Opt. 1 & 2 Opt. 1, 2 & 3

1.0 · 103 0.18 0.17 0.15 0.12
1.6 · 103 0.33 0.30 0.28 0.21
2.5 · 103 0.59 0.54 0.51 0.38
4.0 · 103 1.06 0.98 0.93 0.70
6.3 · 103 1.89 1.77 1.68 1.28
1.0 · 104 3.35 3.14 2.98 2.31
1.6 · 104 5.91 5.60 5.28 4.14
2.5 · 104 10.33 9.84 9.27 7.36
4.0 · 104 17.92 17.18 16.14 13.03
6.3 · 104 31.15 29.83 27.89 22.87

Table 3.2: Runtime in seconds with different levels of optimization.

measure between peaks. This is in contrast to after the optimization, where
releasing memory merely releases it back to the pool. As such, the memory is
still allocated by the program, and polling is thus more likely to measure the
peak-usage. This optimization is documented in Columns 4 and 5 in Tables 3.1
and 3.2.

In total, on inputs larger than 10,000 leaves, these optimizations increased
the speed by approximately 25% and decreased the memory usage by approxi-
mately 45%.

The raw data is available in Tables 3.1 and 3.2. Please note, however, that
these measurements were performed on a development machine, not the machine
used for the experiments in Chapters 4 and 5.

3.5 Limitations

During the development, we have identified a number of limitations of our im-
plementation. These are discussed below.
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3.5.1 Integer representation

As part of the algorithm,
(n

3
)
is calculated for triplets and

(n
4
)
is calculated

for quartets. These numbers, in the order of n3 and n4, respectively, increase
rapidly and representing them is therefore a problem.

We generally use 64-bit signed integers and will therefore run into overflows
at n ≈ 2,000,000 for triplets and n ≈ 55,000 for quartets.

For this reason, we have made it a compile-time option to use the non-
standard type __int128 available in gcc for variables that can potentially con-
tain n4. 128-bit integers are used for these numbers in the experiments below.

With signed 128-bit integers,
(n

4
)
will not overflow before n > 3,600,000,000.

Still being signed 64-bit integers, counters containing n3 will, however, still
overflow at n ≈ 2,000,000. As we, in our experiments, have not calculated
distances on trees with more than 1,000,000 leaves, we have not changed the
n3 counters to 128-bit integers. Doing so would postpone the problem to n ≈
3,000,000,000 where n2 would overflow the 64-bit signed integers.

Another approach to this problem would be to use an arbitrary precision
library. Doing this, there would be no limit to the size of the numbers we could
represent, except for the available memory. We have chosen not to do this for
two reasons:

– Arbitrary precision libraries are slower than build-in types. See below.

– The available memory will, for all intents and purposes, become a prob-
lem before reaching the current 2,000,000 node limit. If not, changing
the n3 counters to 128-bit integers as well, one would definitely run into
memory deficiencies on the computers of today, before the next limit of
3,000,000,000 nodes would be reached.

In regards to the arbitrary precision libraries being slower than build-in
types, we calculated 350 by means of 3 · 3 · . . . · 3, 1,000,000 times. This was
done on a 5 year old laptop, running Windows where not otherwise noted. The
runtimes where:

≈ 150 ms with long long (i.e. 64-bit integers).
≈ 210 ms with __int128 (i.e. 128-bit integers).
≈ 1740 ms with mpz_class usage of gmp1 under Arch Linux.
≈ 11300 ms with a low-level (mpn) usage of mini-gmp.

From this experiment we conclude that calculations will be at least 8 times
slower using an arbitrary precision library than using build-in types.

3.5.2 Recursion depth

The underlying operating system imposes a limit on the number of recursions a
program can perform. Since the implementation is written in a recursive manner
it will not work for very high trees. On input which include a tree consisting

1The GNU Multiple Precision Arithmetic Library. For details about gmp and mini-gmp see
gmplib.org.
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of a very long chain, we have experimentally found that the program fails when
n ≈ 4,000 on Windows and n ≈ 48,000 on Fedora Linux.

The stack overflow already happens when parsing the tree. Even if the parser
was rewritten to have less recursive calls (or be entirely iterative), recursion is
still used in the main-algorithm as presented in Chapter 2. For this reason, even
with a changed parser, there would be a limit to the height of the tree. This
limit could, however, be at a larger n. While one could likely get around this
problem as well, as most trees of height even just 4,000 will likely be very large
in practice, we have chosen not to change our implementation.
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Chapter 4

Experiments

Using our implementation of the algorithms presented in [1], and the variation
presented in Section 2.7, we have performed a number of experiments presented
in Section 4.3.

4.1 Setup
The experiments have been performed on a computer running Ubuntu Linux
Server 12.04, with a quad-core 3.4GHz 64-bit Intel Core i7-3770 processor and
31.2GB of RAM.

Runtime-values are averages of three runs, measured externally. This results
in a slight startup overhead, but gives a good indication of the actual wall-time
runtime of our implementation. All runtimes depicted in this chapter, as well
as more input variations, are presented in tabular form in Appendix D.

In addition to actual runtime-values we have instrumented the code with a
global counter of recursive calls and loop rounds. This provides us with a stable
look at the work done by the implementation, unaffected by other processes
running on the test-system. We, however, do not try to weigh some operations
more than others, and doing constant work is thus recorded as such.

All plots have a logarithmic x-axis, but only some have a logarithmic y-
axis. The non-logarithmic y-axis better illustrates the actual runtime or memory
usage, whereas the logarithmic y-axis can sometimes better illustrate growth and
ease comparison for small input.

Memory usage is, as noted previously, based on polling 10 times per second.
The reported numbers are the peak values.

Additionally, we have compared our implementation to a number of pre-
vious implementations for both triplet and quartet distance calculation (see
Section 1.3). These are presented in Section 4.3.6.

4.2 Test Input
Since we are primarily interested in the scalability of our implementation we
have only performed tests on randomly generated data. We utilize three types
of trees: Fully balanced trees, 75% left-biased trees and 99% left-biased trees.
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Fully balanced trees are, as the name implies, perfectly balanced, i.e. all leaves
are at the same level in the tree (or as close to this as the number of leaves
allow). The x% left-biased trees are trees, where a node with n leaves below it
has x% of these leaves in the first child, and the rest evenly distributed among
the rest of the children.

We can furthermore describe trees as random and input as leaf moved. Ran-
dom describes the situation where all leaf-labels have been randomly permuted.
Two random trees will likely have a very large distance. Leaf moved describes
the situation where T1 is a random tree and T2 is merely T1 where the leaves
labeled 1 and 2 have switched places. This results in a relatively small distance.

Furthermore we define trees as binary or with a specific d. Binary are equiv-
alent to d = 2. A specific d specifies the approximate degree in all nodes, but,
especially on small input, this is not a hard guarantee. For instance on 99%
left-biased trees with n = 100, 99% of the leaves (i.e. 99 leaves) go into the first
subtree, and the remaining 1% (i.e. 1 leaf) goes into the remaining subtree(s).
No matter the d, there will for this node clearly only be one extra child, yield-
ing a binary node. For larger n and other types of trees this discrepancy gets
smaller.

4.3 Results

In this section we present the results from having run our implementation
variations of the quartet distance calculation and our implementation of the
triplet distance calculation on a number of inputs. We also compare our imple-
mentation to the implementations running in time O(n · lg2 n) [15, 16] and
O(n2.688) [13]. The comparisons between quartet distance calculation algo-
rithms, have only been performed on input of up to 10,000 leaves.

4.3.1 Quartet Distance, Binary Trees

From Figure 4.1a we observe that with contract enabled the actual runtime
appears to be O(n · lg2 n), an additional lgn factor compared to the theoretical
timebound (d is the constant 2 here). The counter value, as can be seen from
Figure 4.1b, however, appears to be O(n · lgn), and thus agrees with the theory.
In both cases disabling contract results in an additional lgn factor as the theory
predicts. An explanation for the additional lgn factor in the actual runtime
could be “the cost of address translation” [17].

In all observed cases our variation is faster in practice than the algorithm
in [1].

With contract enabled the quartet distance for the binary balanced trees
with 1,000,000 leaves can be calculated in less than two and a half minutes
using our variation.

From Figures 4.2a and 4.2c we observe that leaf moved input is processed
much faster than two random trees. We believe this is because the leaves being
recolored are close to each other in the HDT. This will result in a lower number
of internal nodes that require updating than if both input trees were random.
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Figure 4.1: Quartet distance calculation. Random balanced binary tree against random
balanced binary tree. The x axis denotes number of leaves.

From the same figures we observe that 75% left-biased trees are actually
processed slightly faster than completely balanced trees. We believe this is
because of the number of times a leaf is recolored during the course of the
algorithm. As only the non-largest children are recolored, leaves are recolored
more in balanced trees than in unbalanced trees.

From Figures 4.2b and 4.2d we observe that with T1 being fully balanced,
the type of T2 does not seem to have a significant influence on the runtime.

In Figure 4.3 we notice something new: Contract is not always a good thing.
In fact, on input that is 99% leaf biased, with contract enabled it takes slightly
more than five and a half minutes to process 1,000,000 nodes. With contract
disabled, however, the same input is processed in slightly less than two minutes.

The runtime practically reverts to the case of two balanced random trees
when setting T1 to a completely balanced tree and only letting T2 be 99% left-
biased. In that case, the algorithm ticks in at approximately two and a quarter
minutes.

A possible explanation for the algorithm with contract disabled being fast
in the 99% left-biased case is the following. Assume for simplicity that the
algorithm with contract disabled is run on input consisting of a chain, i.e. each
internal node has two children where one is a leaf. At each internal node only
one leaf is recolored, and it thus takes O(lgn) time to update the HDT. There
are O(n) internal nodes and the runtime thus becomes O(n · lgn) on this input.
While 99% left-biased is not a chain per-say, we believe it to be similar enough
to a chain for it to explain these runtimes.

However, that the algorithm, with contract enabled, performs significantly
worse with 1,000,000 leaves on 99% left-biased input, than when the input is fully
balanced, is quite a puzzle. Something happens around the 100,000 leaves mark,
where the runtime suddenly jumps with contract enabled. After the sudden
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Figure 4.2: Quartet distance calculation. All trees are binary, the algorithm is our
variation with contract enabled. The x and y axis are number of leaves and runtime
in seconds respectively. Note the (a) and (c) depict the same data, although (c) uses a
logarithmic y-axis. As such the legend from (a) applies to (c) as well. The same is the
case for (b) and (d).

jump, the trend of the runtime continues as before. Having contract enabled is
faster for trees of size 100,000 leaves or less. We can offer no explanation for
this behavior.

We observe that the difference between the two sets of input is whether or
not T1 is a balanced tree. Since this is the primary difference between the two
cases, we conclude that the structure of T1 affects the runtime.
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Figure 4.3: Quartet distance calculation. All trees are random, binary and the algorithm
is our variation. “Disabled” denotes contract being disabled, if nothing is denoted,
contract is enabled. The x and y axis are number of leaves and runtime in seconds
respectively. Both plots depict the same data and the legend applies to both.

4.3.2 Quartet Distance, Arbitrary Degree Trees

The asymptotic analysis suggests that a higher value of d implies a longer run-
time. As can be observed from Figure 4.4a this is not always the case. The
runtime is actually faster with d = 16 than with d = 2. On input with d = 16,
the quartet distance for 1,000,000 leaves can be calculated in slightly over a
minute.

As can be seen from Figure 4.4b, however, this does not generalize indefinitly.
With d = 128 the runtime is still slightly faster than with d = 2, but with
d = 256 this does not repeat, and the runtimes gets continuously slower. For
larger values of d, we do not have data for up to 1,000,000 leaves. This is due
to the memory consumption (see Lemma 1 in Section 2.7).

From Figures 4.4c and 4.4d we observe that both the degree of T1 and of T2
seems to have an effect on the runtime.

It makes sense that the value of d1 affects the runtime. A larger value of
d1 implies fewer recolorings. However, a larger value for d1 also increases the
asymptotic runtime.

The value of d2, however, also seems to change the runtime. One possi-
ble explanation for this, is that with a higher degree, there are fewer internal
nodes. As such, the HDT has fewer leaves, and the trees that are extracted and
contracted are also smaller.

Note that the d1 = 8, d2 = 2 case in Figure 4.4c has been programatically
forced to use the larger degree tree as T1 to facilitate this experiment. Under
normal circumstances the implementation will automatically choose the tree
with the smallest value of d as T1 to guarantee the claimed runtime.

Depicted in Figure 4.5 is our variation versus the unmodified algorithm
from [1]. Recall that our variation runs in time O(min(d1, d2) · n · lgn) whereas
the algorithm from [1] runs in time O(max(d1, d2) · n · lgn). This indicates that
on input where the degree of one tree is larger than the other, our variation
should be faster. This also holds true in practice for large enough difference
between d1 and d2. As depicted in Figure 4.5 with one tree having degree 2 and
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Figure 4.4: Quartet distance calculation. Varying values for d of the input trees to the
algorithm. Trees are random and fully balanced. The x and y axis are number of leaves
and runtime in seconds respectively.

the other degree 1024, the unmodified algorithm uses approximately 42 seconds
processing 100,000 leaves, whereas our variation processes the same input in
approximately 4 seconds.
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Figure 4.5: Quartet distance calculation. Input has d1 = 2 and d2 = 1024. In both
cases contract is enabled and the trees are random and balanced. The x and y axis are
number of leaves and runtime in seconds respectively.

4.3.3 Triplet Distance, Binary Trees

From Figure 4.6a we observe that contracting actually slows things down when
n is less than approximately 250,000 on random balanced binary trees. After
this, contracting was observed to improve the actual runtime. Neither with
contract enabled nor disabled does it look like O(n · lg2 n) as was the case with
the quartet calculation. The counter value does not seem to resemble O(n · lgn)
either, but as the algorithm is essentially the same as the quartet distance
calculation algorithm, although with less counters, we must conclude that it
will increase until reaching some maximum constant.

With contract enabled it takes less than a minute to calculate the triplet
distance for 1,000,000 leaves on this type of input.

From Figures 4.7a to 4.7d we observe that the story from the quartets repeats
itself, i.e. leaf-moved input is faster to process than completely random input.
Equally, 99% left-biased trees are processed slower with contract enabled than
with contract disabled on 1,000,000 leaves. Again, something happens around
the 100,000 leaves mark, for which we can offer no explanation.

Additionally, we note that for leaf-moved input, contracting is not beneficial,
see Appendix D.
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Figure 4.6: Triplet distance calculation. Random balanced binary tree against random
balanced binary tree. The x and y axis are number of leaves and runtime in seconds
respectively.
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Figure 4.7: Triplet distance calculation. The x and y axis are number of leaves and
runtime in seconds respectively. Input in (a) is binary and balanced and is run on our
variation with contract enabled. Input in (b) is 99% left-biased, random and binary,
and is run on our variation. Note the (a) and (c) depict the same data, although (c)
uses a logarithmic y-axis. As such the legend from (a) applies to (c) as well. The same
is the case for (b) and (d).
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Figure 4.8: Triplet distance calculation. Varying values of d for the trees given as input
to the algorithm. Trees are random and fully balanced. The x and y axis are number
of leaves and runtime in seconds respectively.

4.3.4 Triplet Distance, Arbitrary Degree Trees

Unlike the runtime for the quartet distance calculation, the runtime for the
triplet distance calculation, when running on input with large degree, gets con-
tinuously smaller (see Figure 4.8a). On a balanced input with trees of size
1,000,000, we observe that it takes ≈ 59 seconds when d = 2, ≈ 18 seconds
when d = 16, ≈ 12 seconds when d = 128, and ≈ 9 seconds when d = 1024.
This is consistent with the runtime of the triplet distance calculation not de-
pending on d, and the runtimes of the quartet distance calculation decreasing,
up to a point, for larger values of d. The results in Figure 4.8b are also consis-
tent with the results from the quartet distance calculation, i.e. both d1 and d2
affect the runtime of the implementation. Specifically both cases in Figure 4.8b
are faster than the case when d = 2 in Figure 4.8a.

4.3.5 Memory Usage

In Figures 4.9a and 4.9b the memory usage of the triplet distance calculation
algorithm and the quartet distance calculation algorithm, respectively, is de-
picted. Both figures depict memory usage when running on random balanced
binary trees.

Quite a lot of memory is consumed, although not more than some desktops
or even laptops would be able to handle, even at 1,000,000 leaves, at least for
binary trees. The quartet distance calculation algorithms use more memory than
the triplet distance calculation algorithm because of significantly more counters.
Having contract enabled increases the memory usage because of several HDTs.
Our quartet distance calculation algorithm generally uses more memory than
the algorithm in [1] because of more counters still. The difference for binary
trees is approximately 20%.

An exception to the latter is the case where the two values of d are different,
see Figure 4.11b. As for the runtime (see Figure 4.5), our variation benefits from
d = min(d1, d2) compared to d = max(d1, d2) for the unmodified algorithm.

47



103 104 105 106
0.00

1.00

2.00

3.00 Contract enabled
Contract disabled

(a) Triplet distance calculation.

103 104 105 106
0.00

5.00

10.00 [1], contract enabled
[1], contract disabled
Contract enabled
Contract disabled

(b) Quartet distance calculation.

Figure 4.9: Memory usage in GB plotted against the number of leaves, when running
on random, binary and balanced trees using our variation for quartets.
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Figure 4.10: Memory usage in GB plotted against the number of leaves, when running
on random balanced trees of large degree. Contract enabled, and using our variation
for quartets. Note that this figure only depicts memory usage of up to 100,000 leaves,
whereas Figure 4.9 depicts memory usage of up to 1,000,000 leaves.

With this in mind one can, to some degree, trade time for space. With input
consisting of two trees with the same degree, one can reduce the memory usage
and increase the runtime by using the algorithm in [1] with contract disabled
instead of our variation with contract enabled. When the input consists of two
trees with different degree, and where one of the degrees is large and the other
relatively smaller, one can get the best of both worlds by using our variation
with contract enabled.

Per Lemma 1, the memory usage of the quartet distance calculation will
increase with d. This is, per Corollary 1, only the case for the triplet distance
calculation for d ≤ lgn. That the memory usage does not depend on d, when
d > lgn, is observed to hold in practice, see Figure 4.10. The memory usage
for triplets, with 100,000 leaves is observed to be between 220 and 290 MB for
d being 2, 128 and 1024. Interestingly, it is the d = 2 case which uses 290 MB.
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Figure 4.11: Memory usage plotted against the number of leaves, for the quartet dis-
tance calculation when input trees are random, balanced and contract is enabled. In
(b), curiously, the unmodified algorithm uses more memory than the modified algorithm
does in the d1 = d2 = 1024 case (from Figure 4.10b).
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Figure 4.12: Memory usage in GB plotted against the number of leaves, for the triplet
distance calculation with different size d as T1 and T2. Trees are random and balanced.

This is in contrast to what is predicted by Corollary 1. A possible explanation
could be the number of nodes in T2, decreasing for larger values of d2.

For quartets, with 100,000 leaves, the memory usage is observed to be ≈ 0.95,
2.4 and 12.1 GB for d being 2, 128 and 1024, respectively.

From Lemma 1 we see that the quartet distance calculation should, for a
small fixed d, be linear in the size of the input. This is illustrated in Figure 4.11a.
Although the line is less than stable, there does not seem to be a correlation
between a larger input and a larger value of memory once divided by the size of
the input. Thus, the memory usage, for a small fixed d, does in fact seem to be
linear in the size of the input.

From Figure 4.12, we see that the memory usage of the triplet distance
calculation increases with a larger degree for T1 when d2 is fixed. This is as
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Figure 4.13: Comparison to other implementations. Input trees are random balanced
trees. The x and y axis are number of leaves and runtime in seconds respectively.

predicted by Corollary 1. However, as before, the value of d2 also has an effect
in practice. We again offer the explanation of a decreasing number of nodes in
T2 for larger values of d2.

4.3.6 Comparison to Other Implementations

We now compare the implementation of our variation to previous implementa-
tions. Runtimes are depicted in Figure 4.13 and memory usage is depicted in
Figure 4.14.

In Figure 4.13a we observe that the triplet distance calculation algorithm for
random binary trees running in time O(n · lg2 n), [15], is faster in practice than
our implementation of an O(n·lgn) algorithm. This also holds true for our O(n·
lg2 n) algorithm, i.e. with contract disabled. Some of this might be contributable
to the limitation of [15], i.e. it only handles binary trees. As an additional note,
[15] uses 32-bit integers and thus starts to overflow at n ≈ 3,000. Furthermore,
we note that on leaf-moved input, our implementation, with contract disabled,
is actually faster than [15], see Appendix D.

Comparing the quartet distance calculation algorithms, however, our imple-
mentation, both with and without contract enabled, is faster than the other
implementations tested. While this is not surprising for the algorithm running
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# Leaves Quart, O(n2.688) Contract enabled Percentage

1.0 · 102 0.005 0.016 28.64%
1.6 · 102 0.006 0.023 25.48%
2.5 · 102 0.010 0.030 32.75%
4.0 · 102 0.016 0.062 25.28%
6.3 · 102 0.033 0.146 22.85%
1.0 · 103 0.070 0.315 22.22%
1.6 · 103 0.398 0.496 80.23%
2.5 · 103 0.987 0.734 134.54%
4.0 · 103 1.620 1.166 138.92%
6.3 · 103 3.210 1.844 174.08%
1.0 · 104 7.141 2.947 242.29%

Table 4.1: Runtime comparison between our implementation with contract enabled
and [13]. Percentage denotes time spent by [13] compared to our implementation.
Input is balanced trees with d = 1024.

in time O(n2.688) [13], it comes as a welcome surprise that the story from the
triplet case does not repeat itself in regards to the O(n · lg2 n) time algorithm
[16]. An explanation for the latter might be that the quartet distance calcula-
tion algorithm implemented in [16] uses a counting scheme based on very general
polynomials. This, however, is pure speculation on our part.

Both our implementation and the implementation from [13] are faster with
d = 8 than with d = 2. Our implementation is, however, in both cases faster
than the implementation from [13], see Figures 4.13b and 4.13c.

As can be observed from Figure 4.13d, our implementation is slower than
implementation in [13] for trees with less than approximately 2,000 leaves when
d = 1024. In [13] the authors observed that the runtime of their implementation
was, in practice, closer to O(n2) than the theoretical O(n2.688). This means
that for input of size 210, the expected runtime of their implementation, for
some constant c, is c · 220. The runtime of our implementation running in time
O(min(d1, d2)·n·lgn), for some constant c′, becomes c′·210·210·lg 210 = c′·10·220.
These numbers give a possible explanation as to why our implementation is
slower for small trees with large d, compared to [13].

As can be seen from Table 4.1 our implementation, however, catches up to
[13] and becomes increasingly faster for large input. This is also in line with the
above.

The memory usage of the different algorithms, compared to ours, is depicted
in Figure 4.14. As can be seen from Figure 4.14a, our implementation of the
triplet distance calculation, both with contract enabled and disabled, uses more
memory than the implementation in [15]. An explanation for this could be the
use of 32-bit integers in [15], whereas we utilize 64-bit integers.

From Figures 4.14b to 4.14d we generally observe the same trend for the
memory usage as we did for the runtime. One exception to this, is the memory
usage of the implementation from [16]. The memory usage of this implemen-
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(a) Triplet dist. calculation, d = 2.
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(b) Quartet dist. calculation, d = 2.
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(c) Quartet dist. calculation, d = 8.
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(d) Quartet dist. calculation, d = 1024.

Figure 4.14: Comparison to other implementations. Input trees are random balanced
trees. The x and y axis are number of leaves and memory usage in GB respectively.

tation increases significantly slower than the runtime. A purely speculative
explanation for this is the use of a counting scheme based on very general poly-
nomials, which do not require much space.

4.4 Summary

In Chapter 3 a number of questions were posed. Using the results from this
chapter, we are now in a position to answer these questions.

– The first question posed was, whether or not the large number of counters
made the algorithm impractical.

It is certainly true that we need to calculate many variables, and that the
constant is very large. As can be seen from Figure 4.1 and Sections 4.3.3
and 4.3.4, however, the usage of the algorithms presented in [1] do, in fact,
seem to have practical value.

– The second question posed was, whether or not the overhead of performing
the contract operation, would outweigh the benefits of contracting.
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As we saw in, e.g., Figure 4.1, it is sometimes beneficial to perform the
contract operation. However, as we saw in Figure 4.3, this is not always
the case. As such, the benefits of contract must be weighed on a case by
case basis.

– The final question posed was, if our variation, as presented in Section 2.7,
had any advantage over the algorithm presented in [1].
As we saw in, e.g., Figures 4.1 and 4.5, our variation is indeed faster.
Although, as we saw in Figure 4.9b, this comes at an added cost of memory
(approximately 20% for binary trees). However, as we saw in Figure 4.11b,
for the right input, this can be more than saved by the memory usage
depending on min(d1, d2) instead of max(d1, d2).

Additionally, we observed that the structure (i.e. how balanced the tree
is) and degree of the tree operating as T1 is important for the runtime of the
algorithm, and that the degree of T1 influences the memory usage (see, e.g.,
Figures 4.3, 4.4a, 4.4b and 4.10b).

We do note that the triplet distance calculation is different from the quartet
distance calculation in this regard, as the degree of T1 does not change the
asymptotic runtime, but only the asymptotic memory usage of the algorithm.

We have, however, observed the degree of T1 to, in practice, affect both
the runtime and the memory usage (see Figures 4.8b and 4.12). In practice,
the runtime decreases for larger values of d1. For the memory usage, different
values for d1 only have an effect when d1 ≤ lgn. This is due to the asymptotic
memory usage being O(n · min(d1, lgn)). As such, for d1 > lgn, the value of
d1 no longer affects the memory usage (see Figure 4.10a). Thus, in the triplet
distance calculation, the tree used as T1 should be the tree with the largest
degree, as long as the needed amount of memory is available.

In addition, the degree of T2 was seen to influence the runtime (see Fig-
ure 4.4d), whereas the structure of T2 does not seem to be relevant in this
regard (see Figures 4.2b and 4.2d).

Comparing our implementation to previous implementations, we have found
that our implementation is very competitive in regards to both runtime and
memory usage. For triplets, our implementation only appears to be a small
constant factor slower than the implementation in [15]. It should be noted that
our implementation, in contrast to the implementation in [15], also operates on
trees of arbitrary degree and does not overflow at n ≈ 3,000.

For quartets, we observe that for some types and sizes of input, the im-
plementation in [13] is faster than our implementation. Our implementation,
however, generally outperforms the implementations in [13, 16].
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Chapter 5

Calculating E Instead of B

As the memory consumption appears to be the first limiting factor, an obvious
question is if the amount of memory used can be decreased. For instance, would
it be possible to decrease the number of counters used? Additionally could
the problem be solved faster? As can be seen from Figures 5.1a and 5.1b, the
majority of the time spent by the implementation is spent on counting in the
HDT.

Recall from Figure 1.3 and Section 1.4 that given either A or B and any
of the other values, both the triplet distance and the quartet distance can be
calculated in linear time (see Section 2.1).

A solution that addresses both of the above mentioned problems, could thus
be to find E instead of B when calculating the quartet distance.

To calculate B, [1] dictates the maintenance of sums for 10 configuration
combinations. To remove the need for swapping the two trees, our variation
adds 4 configuration combinations.

A rudimentary enumeration of the cases used when calculating E, shows
that we would need to maintain only 5 different configuration combinations (see
Figure 5.2). This indicates that fewer counters could be required, thus using
less memory and possibly calculating the result faster.

From the rudimentary enumeration of the cases this approach seemed promis-
ing and we thus filled out the details (available in Appendix C) and did an
implementation. Note that this introduces a new aggregate descriptor, 4. This
descriptor is to as is to •, see Section 2.5.

Our variation, calculating B, requires the handling of 14 configuration com-
binations, totaling 92 sums. These sums require up to 5d2 + 48d+ 8 counters.

In comparison, calculating E instead, only requires the handling of 5 config-
uration combinations, totaling 21 sums, requiring up to 1d2 + 12d+ 12 counters
(of which 1d2 + 1d also appeared in the B calculation).

Calculating E instead of B affects neither the asymptotic runtime, nor the
asymptotic memory usage.
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(b) Contract disabled.

Figure 5.1: Time spent in different parts of the algorithm. Both figures depict quartet
distance on our first variation of the algorithm. Trees are random, balanced and binary.
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Figure 5.2: Configuration combinations needed when calculating E instead of B.

5.1 Results when Calculating E
As can be seen from Figure 5.3, the amount of time spent in the counting part of
the algorithm is relatively smaller when calculating E instead of B. Additionally
we note from Figure 5.4 that the actual runtime, when calculating E instead of
B, is also less. This is the case both for binary trees and with larger values of
d. We further note that the memory usage (see Figure 5.5), when calculating
E instead of B, is significantly lower. This allows us to calculate the quartet
distance on input consisting of 1,000,000 leaves, when d = 256. This was not
possible when calculating B, with the amount of memory available on the test
system.

Lastly, from Appendix D we observe that for all tested input, our variation
calculating E and with contract disabled, is faster than the algorithm presented
in [1] with contract enabled. For some input (for the tested input when d1 ≥ 16),
our variation calculating E and with contract disabled, is also faster than our
variation calculating B with contract enabled. Enabling contract for the E
calculation decreases the runtime further. These details indicate that one could
write a fast implementation, calculating the quartet distance between two trees
of arbitrary degree, without the need for difficult contract-code, by calculating
A (with our additions) and E.

56



102 103 104 105 106
0%

20%

40%

60%

80%

100%

Coloring Counting Contracting

(a) Our variation, B.
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(b) Our variation, E.

Figure 5.3: Time spent in different parts of the algorithm for calculating B or E. Both
figures depict quartet distance calculation with contract enabled. Trees are random,
balanced and binary.
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Figure 5.4: Runtime in seconds plotted against the number of leaves, when run on
random balanced trees with contract enabled.
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Figure 5.5: Memory usage in GB plotted against the number of leaves, when run on
random balanced trees with contract enabled.
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5.2 Summary
As we saw, the number of counters needed was significantly decreased by calcu-
lating E instead of B. This did in fact result in a faster runtime (see Figure 5.4),
and a smaller memory usage (see Figure 5.5).

In our view, one should, when calculating the quartet distance, always use
this variation, i.e. calculating A and E, as it is both faster and uses less memory.
Additionally, as this variation requires both less counters and fewer sums, the
task of implementing this variation is less daunting. As a side note, by calculat-
ing A and E for both the triplet distance calculation and the quartet distance
calculation, the combined algorithm is more polished.

As the amount of asymptotic work done, in each HDT node, has not changed,
the overall algorithm is still the same. As such, we expect the conclusions regard-
ing the different structures and degrees of the input, as presented in Section 4.4,
to remain unchanged.
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Chapter 6

Future work

Even with our improvements the memory consumption appears to be the first
limiting factor. As such the question of, whether the amount of memory used can
be decreased, still remains. Would it be possible, e.g., to decrease the number
of counters further than we did by calculating E instead of B? Alternatively, if
a precise result is not strictly necessary, could 32-bit floats be used to decrease
the memory usage while still being correct within a margin of error of a few
percent?

Additionally, in our implementation we contract the largest subtree of a
given node when the subtree is smaller than a specific fraction of the size of the
HDT. This is set for the duration of the program at compile-time. Can this be
set dynamically during the running of the program to fine-tune performance for
the current state of the program? Alternatively, does another measure than size
exist for comparison?

We contract by converting the extracted HDT into the tree it represents,
contracting this tree, and constructing a new HDT from the tree. Another
question is if contracting can be done directly on the extracted HDT, and if this
would result in a smaller overhead when contracting?

Another question in the same ballpark, is whether or not the asymptotic
run time can be reduced further. For instance, could the triplet or quartet
distance be calculated in linear time instead? Or can the d factor, for quartets,
be removed?

Since most processors today have multiple cores, it would be interesting to
see, if the algorithm can be multithreaded. A possible approach for this, might
be to split T1 in two, extracting and contracting the relevant parts of T2, and
delegating each subproblem to different threads. If this approach is feasible, it
could perhaps be extended to more cores by, for example, repeating the process
on each subproblem. Furthermore, if this technique is feasible, it might make
it possible to split the problem into smaller chunks, solving one at a time for a
smaller memory footprint.

Going in an entirely different direction, can the distances be approximated
faster, and with a smaller memory footprint, instead? Would it for instance be
possible to create an approximation algorithm that produces a correct result

59



within a margin of error of a few percent, while running in linear or sublinear
time and space?
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Chapter 7

Conclusion

We have implemented and improved upon the algorithm in [1].
One improvement of the quartet distance calculation algorithm reduces the

runtime from O(max(d1, d2)·n·lgn) to O(min(d1, d2)·n·lgn). The memory usage
is also decreased from O(max(d1, d2)·n·min(max(d1, d2), lgn)) to O(min(d1, d2)·
n ·min(d1, d2, lgn)). Timewise, the improvement also pays off in practice, even
when d1 = d2, although this is not implied by the asymptotic runtime. For
d1 = d2, the memory usage of the improvement, however, increases by a constant
factor. Both with and without this improvement, the algorithm works well in
practice.

The quartet distance calculation, as presented in [1], as well as this improve-
ment, calculates the distance by calculating the values A and B.

We have improved the runtime and memory consumption further by instead
calculating A and E. This does not change the asymptotic runtime or memory
usage, but in practice it has increased the speed and decreased the memory
usage, both by a constant factor.

For practical purposes the amount of memory is likely going to be a limiting
factor before time-usage is. For binary trees with 1,000,000 leaves as input,
the memory consumption of our vaiation of the quartet distance calculation
algorithm, calculating A and B, is approximately 11.5GB. The memory usage
increases with the degree, and for d = 256, the memory usage is more than
22GB for ≈ 630,000 leaves. Calculating A and E instead reduces these numbers
to approximately 8.5GB and 15GB, respectively.

We are able to calculate the quartet distance for binary trees with 1,000,000
leaves in less than two and a half minutes using our first variation. The second
variation reduces this to under two minutes. The triplet distance calculation
is faster than this, although an implementation for binary trees which is even
faster in practice does exist [15]. This even faster triplet distance calculation
implementation, however, overflows at n ≈ 3,000.

We have found that contracting the tree can in fact improve the runtime for
calculating the quartet distance as well as, for large enough input, the triplet
distance. Whether this is beneficial or not, however, depends on the trees given
as input.
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While the actual runtime, for the quartet distance calculation on binary
trees, appears to be O(n · lg2 n), a counter-variable, counting the amount of
constant work only seems to grow as O(n · lgn) as the theory predicts.

In conclusion, we have documented the ideas brought forth by Brodal et al.
[1] to be both feasible and practical, even for very large trees.
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Appendix A

Counters and Sums from [SODA
2013], Corrected

This appendix is for completeness only and is courtesy of Brodal et al. [1]. We have, however,
corrected the errors and added the missing counters. The changes have been marked with the
symbol ]. We have also inserted the symbol † which represents the counters used for the triplet
distance calculation the few places where it was missing. Equivalently we have inserted the symbol ?
which represents bottlenecks of the quartet distance calculation the few places where it was missing.

Additionally, we found that the counter nX
(i(i•)) from [1] was not necessary. It has been removed

from the list.
While we have tried to fix all errors we cannot promise we have not missed some. As we have

not found examples of our implementation giving a wrong result, however, we do believe any errors
to be localized to these tables.
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Figure A.1: Sums used for finding A and E for the triplet distance calculation.
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Figure A.2: Illustration of the different counters used to find A and E for the triplet distance calculation
(marked with †) and A for the quartet distance calculation.
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• − n
C1
i )nC2

i + nC1
i (nC2

(0•) − n
C2
(0i)) + nC1

0 nC2
•↑i + (nC1

• − n
C1
i )nC2

0↑i nG′
i (nG′′

(0•) − n
G′′

(0i))
Common 0 nC1

− + nC2
− + f−(C1, C2) not defined not defined 0

nC
0↑i nC1

0 nC2
i

f−(C1, C2) =



nC
0↑• nC1

0 nC2
•

nC
i↑0 nC1

i nC2
0

nC
i↑i nC1

i nC2
i

† nC
i↑• nC1

i (nC2
• − n

C2
i )

nC
•↑0 nC1

• n
C2
0

nC
•↑i (nC1

• − n
C1
i )nC2

i

nC
0↑(ii) nC1

0 nC2
(ii)

] nC
i↑(0•) nC1

i (nC2
(0•) − n

C2
(0i))

nC
i↑(• ) nC1

i (nC2
(• ) − n

C2
(i•))

nC
•↑(ii) (nC1

• − n
C1
i )nC2

(ii)
nC

0↑•• nC1
0 nC2

••
nC

i↑0• nC1
i (nC2

0• − n
C2
0i )

nC
i↑•• nC1

i (nC2
•• − n

C2
ii )

nC
i↑• nC1

i (nC2
• − n

C2
i• )

nC
•↑ii (nC1

• − n
C1
i )nC2

ii

nC
(ii)↑0 nC1

(ii)n
C2
0

nC
(ii)↑• nC1

(ii)(n
C2
• − n

C2
i )

nC
(••)↑i (nC1

(••) − n
C1
(ii))n

C2
i

nC
0↑i↑i nC1

0 nC2
i↑i + nC1

0↑in
C2
i

nC
i↑•↑0 nC1

i (nC2
•↑0 − n

C2
i↑0) + nC1

i↑•n
C2
0

nC
i↑0↑• nC1

i (nC2
0↑• − n

C2
0↑i) + nC1

i↑0(nC2
• − n

C2
i )

nC
•↑i↑i (nC1

• − n
C1
i )nC2

i↑i + nC1
•↑in

C2
i

] nC
i↑(••) nC1

i (nC2
(••) − n

C2
(ii))

] nC
0↑ii nC1

0 nC2
ii

] nC
(0•)↑i (nC1

(0•) − n
C1
(0i))n

C2
i

† nX
• =

∑d
i=1 n

X
i

nX
•• =

∑d
i=1 n

X
ii

† nX
• = 1

2
∑d

i=1 n
X
i•

nX
(••) =

∑d
i=1 n

X
i(••)

nX
(••) =

∑d
i=1 n

X
(ii)

nX
(• ) = 1

2
∑d

i=1 n
X
(i•)

] nC
•↑( ) =

∑d
i=1 n

C
•↑(ii)

nX
[i•] = nX

i (nX
• − nX

i )
] nX

[• ] = 1
2
∑d

i=1 n
X
[i•]

] nC
•↑ =

∑d
i=1 n

C
i↑••

Figure A.3: Counters used for the A and E calculation for the triplet distance calculation (marked with †)
and counters used for the A calculation of the quartet distance calculation.
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Case T1 T2 CC→C
C1

C2 GG→G
G1 G2

αα
i i j j i i j j

1 2

3 4

5 6
1,2,5,6

∑d
i=1 n

C1
i · n

C2
i↑(••) 3:4

∑d
i=1 n

G1
(ii)

(
nG2

(••) − n
G2
(ii)

)
3,4

∑d
i=1

(nC1
i
2
) (
nC2

(••) − n
C2
(ii)

)

βα j k
i i i i j k

1 2

3 4

5 6

1,2
∑d

i=1 n
C1
i · n

C2
i↑(• ) 3:4 σ

[∑d
i=1 n

G′

(ii)

(
nG′′

(• ) − n
G′′

(i•)

)]
3
∑d

i=1
(nC1

i
2
) (
nC2

(• ) − n
C2
(i•)

)
4
∑d

i=1

(
nC1

[• ] − n
C1
[i•]

)
nC2

(ii)

5,6]
∑d

k=1 n
C1
k

(
nC2
•↑( ) − n

C2
k↑(••) − n

C2
•↑(kk)

)

ββ j k
i i

j k
i i
1 2

3 4
5

1,2
∑d

i=1 n
C1
i · n

C2
i↑• 3:45 σ

[∑d
i=1 n

G′

(ii)

(
nG′′
• − nG′′

i•

)]
3
∑d

i=1
(nC1

i
2
) (
nC2
• − n

C2
i•

)
34:5,35:4 σ

[∑d
k=1 n

G′
k

(
nG′′

(••) − n
G′′

k(••) − n
G′′

•(kk)

)]
4,5

∑d
k=1 n

C1
k

(
nC2

(••) − n
C2
k(••) − n

C2
•(kk)

)

i i
j k
1 2

3 4
5

1,2]
∑d

k=1 n
C1
k

(
nC2
•↑ − nC2

k↑•• − n
C2
•↑kk

)
3:45 σ

[∑d
i=1 n

G′
ii

(
nG′′

(• ) − n
G′′

(i•)

)]
3
∑d

i=1

(
nC1

[• ] − n
C1
[i•]

)
nC2

ii 34:5,35:4 σ
[∑d

i=1 n
G′
i · nG′′

i(• )

]
4,5

∑d
i=1 n

C1
i · n

C2
i(• )

γα 0
j

i i i i j 0
1 2

3 4

5 6

1,2
∑d

i=1 n
C1
i · n

C2
i↑(0•) 3:4 σ

[∑d
i=1 n

G′

(ii)

(
nG′′

(0•) − n
G′′

(0i)

)]
3:45

∑d
i=1

(nC1
i
2
) (
nC2

(0•) − n
C2
(0i)

)
4
∑d

i=1 n
C1
0

(
nC1
• − n

C1
i

)
nC2

(ii)

5
∑d

i=1

(
nC1
• − n

C1
i

)
nC2

0↑(ii)
6
∑d

i=1 n
C1
0 · n

C2
•↑(ii)

γβ 0
j

i i

j 0
i i
1 2

3 4
5

3
∑d

i=1
(nC1

i
2
) (
nC2

0• − n
C2
0i

)
3:45 σ

[∑d
i=1 n

G′

(ii)

(
nG′′

0• − nG′′
0i

)]
1,2

∑d
i=1 n

C1
i · n

C2
i↑0• 34:5 σ

[
nG′

0 · nG′′

(••)

]
5
∑d

i=1 n
C1
0 · n

C2
•(ii) 35:4 σ

[∑d
i=1

(
nG′
• − nG′

i

)
nG′′

0(ii)

]
4
∑d

i=1

(
nC1
• − n

C1
i

)
nC2

0(ii)

i i
j 0
1 2

3 4
5

1
∑d

i=1

(
nC1
• − n

C1
i

)
nC2

0↑ii 3:45 σ
[∑d

i=1 n
G′
ii

(
nG′′

(0•) − n
G′′

(0i)

)]
2
∑d

i=1 n
C1
0 · n

C2
•↑ii 34:5,35:4 σ

[∑d
i=1 n

G′
i · nG′′

i(0•)

]
3
∑d

i=1 n
C1
0

(
nC1
• − n

C1
i

)
nC2

ii

4,5
∑d

i=1 n
C1
i · n

C2
i(0•)

0
j

i i
1 2

3 4
5 6

1,2
∑d

i=1 n
C1
i · n

C2
i↑•↑0 5:6 σ

[∑d
i=1 n

G′
0 · nG′′

(•(ii))

]
3
∑d

i=1
(nC1

i
2
) (
nC2
•↑0 − n

C2
i↑0

)
4
∑d

i=1

(
nC1
• − n

C1
i

)
nC2

(ii)↑0
5
∑d

i=1 n
C1
[•(ii)] · n

C2
0

6
∑d

i=1 n
C1
0 · n

C2
(•(ii))

0
j

i i

j
0

i i
1 2

3 4
5 6

1,2
∑d

i=1 n
C1
i · n

C2
i↑0↑• 5:6 σ

[∑d
i=1

(
nG′
• − nG′

i

)
nG′′

(0(ii))

]
3
∑d

i=1
(nC1

i
2
) (
nC2

0↑• − n
C2
0↑i

)
γγ 4

∑d
i=1 n

C1
0 · n

C2
(ii)↑•

5
∑d

i=1 n
C1
[0(ii)]

(
nC2
• − n

C2
i

)
6
∑d

i=1

(
nC1
• − n

C1
i

)
nC2

(0(ii))

i
i

0 j
1 2

3 4
5 6

1
∑d

i=1 n
C1
0 · n

C2
•↑i↑i 5:6 σ

[∑d
i=1 n

G′
i · nG′′

(i(0•))

]
2
∑d

i=1

(
nC1
• − n

C1
i

)
nC2

0↑i↑i

3
∑d

i=1 n
C1
0

(
nC1
• − n

C1
i

)
nC2

i↑i
4
∑d

i=1 n
C1
i · n

C2
(0•)↑i

5
∑d

i=1 n
C1
[i(0•)] · n

C2
i

6
∑d

i=1 n
C1
i · n

C2
(i(0•))

Figure A.4: Sums used for finding A for the quartet distance calculation.
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Counter C G

? nX
ij i j i j

? nX
(ij)

i j i j

nX
i(0i) i

0 i
i
0 i

nX
•(0i) j

0 i
j
0 i

nX
0(i•) 0

i j
0

i j

? nX
•(i ) j

i k
j

i k

nX
i(i•) i

i j
i
i j

? nX
•(i•) j

i j
j

i j

nX
0(i•) 0

i j
0

i j

nX
•(• ) j

j k
j
j k

nX
(i(i•)) i

i j
i
i j

nX
(i(0i)) i

0 i
i
0 i

nX
(0(i•)) 0

i j
0

i j

nX
(•(0i)) j

0 i
j
0 i

nX
(•(• )) j

j k
j
j k

Counter

nX
[i(i•)] i

i j

nX
[0(i•)] 0

i j

nX
[i(0i)] i

0 i

nX
[0(i•)] 0

i j

nX
[•(0i)] j

i 0

nX
[•(• )] j

j k

Counter C

nC
0↑i•

0
i j

nC
•↑i0

j

i 0

nC
i↑i•

i
i j

nC
•↑•

j

j k

nC
(i•)↑0

i j

0

nC
(i•)↑i

i j

i

nC
(0i)↑i

i 0

i

nC
(0i)↑•

i 0

j

nC
(• )↑•

j k

j

nC
0↑(i•)

0 i j

nC
i↑(i•)

i
i j

nC
•↑(0i)

j
i 0

nC
i↑(0i)

i
0 i

? nC
•↑(i )

j
i k

]? nC
•↑(i•)

j
i j

]? nC
•↑i

j

i k

Counter C

]? nC
•↑i•

j
i j

]? nC
i↑0i

i

0 i

] nC
•↑(• )

j
j k

nC
•↑i↑0

j

i
0

nC
i↑i↑0

i

i
0

nC
0↑•↑i

0
j
i

nC
•↑0↑i

j

0
i

nC
i↑0↑i

i
0
i

nC
0↑i↑•

0
i

j

nC
i↑i↑•

i
i

j

nC
•↑•↑

j

j

k

] nC
i↑•↑i

i

j
i

] nC
•↑ ↑•

j

k

j

Figure A.5: Illustration of the different additional counters used to find B for the quartet distance calculation.
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LC
C1

C2
G1 G2 C G

IC

L→C CC→C GG→G C→G IG→C
Counter nC

− nC
− nG

− nG
− nC

−
Common 0 nC1

− + nC2
− nG1

− + nG2
− + g−(G1, G2) + g−(G2, G1) 0 nG

−
? nX

ij nG′
i nG′′

j

nX
i(0i) nG′

i nG′′

(0i)
nX
•(0i) (nG′

• − nG′
i )nG′′

(0i)
nX

0(i•) nG′
0 nG′′

(i•)
? nX
•(i )

∑d
j=1,j 6=i(nG′

• − nG′
i − nG′

j )nG′′

(ij)
nX

i(i•) nG′
i nG′′

(i•)
]? nX

•(i•)
∑d

j=1,j 6=i n
G′
j · nG′′

(ij)

g−(G′, G′′) =


Common 0 nC1

− + nC2
− nG1

− + nG2
− nG

−
]? nX

(ij) nC
i · nC

j

nX
(i(0i)) nC

[i(0i)]
nX

(0(i•)) nC
[0(i•)]

nX
(•(0i)) nC

[•(0i)]
nX

(•(• )) nC
[•(• )]

Common 0 nC1
− + nC2

− + f−(C1, C2) nG1
− + nG2

− + g−(G1, G2) + g−(G2, G1) nC
− nG

−
nX

[i(i•)] nC1
i (nC1

• − n
C1
i )nC2

i + nC1
i nC2

•↑i + (nC1
• − n

C1
i )nC2

i↑i + nC1
i nC2

(i•) nG′

(i•)n
G′′
i

] nX
[0(i•)] nC1

i (nC1
• − n

C1
i )nC2

0 + (nC1
• − n

C1
i )nC2

i↑0 + nC1
0 nC2

(i•) + nC1
i (nC2

•↑0 − n
C2
i↑0) nG′

0 nG′′

(i•)
] nX

[i(0i)] nC1
i nC2

(0i) + nC1
i nC2

0↑i + (nC1
0 nC1

i )nC2
i + nC1

0 · n
C2
i↑i nG′

i nG′′

(0i)
] nX

[•(0i)] (nC1
i nC1

0 )(nC2
• − n

C2
i ) + (nC1

• − n
C1
i )nC2

(0i) + nC1
0 · n

C2
i↑• + nC1

i · (n
C2
0↑• − n

C2
0↑i) nG′

(0i)(n
G′′
• − nG′′

i )

 = f−(C1, C2)
g−(G′, G′′)

Common 0 nC1
− + nC2

− + f−(C1, C2) not defined not defined 0
nC

0↑i• nC1
0 nC2

i•
nC
•↑0i (nC1

• − n
C1
i )nC2

0i

nC
i↑i• nC1

i nC2
i•

nC
(i•)↑0 nC1

(i•)n
C2
0

nC
(i•)↑i nC1

(i•)n
C2
i

nC
(0i)↑i nC1

(0i)n
C2
i

nC
(0i)↑• nC1

(0i)(n
C2
• − n

C2
i )

nC
0↑(i•) nC1

0 nC2
(i•)

nC
i↑(i•) nC1

i nC2
(i•)

nC
•↑(0i) (nC1

• − n
C1
i )nC2

(0i)
nC

i↑(0i) nC1
i nC2

(0i)
? nC
•↑(i )

∑d
k=1,k 6=i(nC1

• − n
C1
k − n

C1
i )nC2

(ik)
nC
•↑i↑0 nC1

•↑in
C2
0 + (nC1

• − n
C1
i )nC2

i↑0
nC

i↑i↑0 nC1
i↑in

C2
0 + nC1

i nC2
i↑0

nC
0↑•↑i (nC1

0↑• − n
C1
0↑i)n

C2
i + nC1

0 nC2
•↑i

nC
•↑0↑i (nC1

•↑0 − n
C1
i↑0)nC2

i + (nC1
• − n

C1
i )nC2

0↑i
nC

i↑0↑i nC1
i↑0n

C2
i + nC1

i nC2
0↑i

nC
0↑i↑• nC1

0 nC2
i↑• + nC1

0↑i(nC2
• − n

C2
i )

nC
i↑i↑• nC1

i↑i(nC2
• − n

C2
i ) + nC1

i nC2
i↑•

] nC
i↑•↑i nC1

i nC2
•↑i + nC1

i↑•n
C2
i

]? nC
•↑(i•)

∑d
k=1,k 6=i n

C1
k nC2

(ik)
]? nC

•↑i
∑d

k=1,k 6=i(nC1
• − n

C1
k − n

C1
i )nC2

ik

]? nC
•↑i•

∑d
k=1,k 6=i n

C1
k nC2

ik

] nC
i↑0i nC1

i nC2
0i

f−(C1, C2) =



nX
[•(• )] =

∑d
i=1 n

X
[i(i•)]

nX
•(• ) =

∑d
i=1 n

X
i(i•)

nC
•↑• =

∑d
i=1 n

C
i↑i•

nC
(• )↑• =

∑d
i=1 n

C
(i•)↑i

] nC
•↑•↑ =

∑d
i=1 n

C
i↑i↑•

] nC
•↑(• ) =

∑d
i=1 n

C
i↑(i•)

] nC
•↑ ↑• =

∑d
i=1 n

C
i↑•↑i

Figure A.6: Additional counters used for the B calculation of the quartet distance calculation.

71



Case T1 T2 CC→C
C1

C2 GG→G
G1 G2

αα
i i j j i j i j

1 2

3 4

5 6
1,2,5,6

∑d
i=1 n

C1
i · n

C2
•↑(i•) 3:4 ?

∑d−1
i=1

∑d
j=i+1 n

G1
(ij) · n

G2
(ij)

3,4 ?
∑d−1

i=1
∑d

j=i+1 n
C1
i · n

C1
j · n

C2
(ij)

βα j k
i i i j i k

1 2

3 4

5 6

1,5
∑d

i=1 n
C1
i · n

C2
•↑(i ) 3:4 ?

∑d
i=1

∑d
j=1,j 6=i n

G1
(ij)

(
nG2

(i•) − n
G2
(ij)

)
2,6

∑d
j=1 n

C1
j

(
nC2
•↑(• ) − n

C2
j↑(j•) − n

C2
•↑(j•)

)
3,4 ?

∑d
i=1

∑d
j=1,j 6=i n

C1
i · n

C1
j

(
nC2

(i•) − n
C2
(ij)

)

ββ j k
i i

i k
i j
1 2

3 4
5

1
∑d

i=1 n
C1
i · n

C2
•↑i 3:45 ? σ

[∑d
i=1

∑d
j=1,j 6=i n

G′

(ij)

(
nG′′

i• − nG′′
ij

)]
2

∑d
j=1 n

C1
j

(
nC2
•↑• − n

C2
•↑j• − n

C2
j↑j•

)
35:4 σ

[∑d
i=1 n

G′

•(i ) · n
G′′
i

]
3 ?

∑d
i=1

∑d
j=1,j 6=i n

C1
i · n

C1
j

(
nC2

i• − n
C2
ij

)
34:5 σ

[∑d
k=1 n

G′
k

(
nG′′

•(• ) − n
G′′

k(k•) − n
G′′

•(k•)

)]
4

∑d
i=1 n

C1
i · n

C2
•(i )

5
∑d

k=1 n
C1
k

(
nC2
•(• ) − n

C2
•(k•) − n

C2
k(k•)

)

γα 0
j

i i i 0 i j
1 2

3 4

5 6

1
∑d

i=1 n
C1
i · n

C2
0↑(i•) 3:4 σ

[∑d
i=1 n

G′

(0i)n
G′′

(i•)

]
2 nC1

0 ·
∑d

i=1 n
C2
i↑(i•)

3 nC1
0 ·

∑d
i=1 n

C1
i · n

C2
(i•)

4
∑d

i=1 n
C1
i

(
nC1
• − n

C1
i

)
nC2

(0i)
5

∑d
i=1 n

C1
i · n

C2
•↑(0i)

6
∑d

i=1

(
nC1
• − n

C1
i

)
· nC2

i↑(0i)

γβ 0
j

i i

i j
i 0
1 2

3 4
5

1
∑d

i=1 n
C1
i · n

C2
0↑i• 3:45 σ

[∑d
i=1 n

G′

(0i) · n
G′′
i•

]
2 nC1

0 · n
C2
•↑• 34:5 σ

[∑d
i=1 n

G′

i(0i)

(
nG′′
• − nG′′

i

)]
3 nC1

0 ·
∑d

i=1 n
C1
i · n

C2
i• 35:4 σ

[∑d
i=1 n

G′

•(0i) · n
G′′
i

]
4

∑d
i=1 n

C1
i · n

C2
•(0i)

5
∑d

i=1

(
nC1
• − n

C1
i

)
· nC2

i(0i)

i 0
i j
1 2

3 4
5

1
∑d

i=1 n
C1
i · n

C2
•↑0i 3:45 σ

[∑d
i=1 n

G′

(i•) · n
G′′
0i

]
2

∑d
i=1

(
nC1
• − n

C1
i

)
· nC2

i↑0i 34:5 σ
[
nG′

•(• ) · n
G′′
0

]
3

∑d
i=1 n

C1
i

(
nC1
• − n

C1
i

)
nC2

0i 35:4 σ
[∑d

i=1 n
G′

0(i•) · n
G′′
i

]
4

∑d
i=1 n

C1
i · n

C2
0(i•)

5 ] nC1
0 · n

C2
•(• )

γγ 0
j

i i

j
i

i 0
1 2

3 4
5 6

1
∑d

i=1 n
C1
i · n

C2
0↑i↑• 5:6 σ

[∑d
i=1

(
nG′
• − nG′

i

)
nG′′

(i(0i))

]
2 nC1

0 · n
C2
•↑•↑

3 nC1
0 ·

∑d
i=1 n

C1
i · n

C2
i↑•

4
∑d

i=1 n
C1
i · n

C2
(0i)↑•

5
∑d

i=1 n
C1
[i(0i)]

(
nC2
• − n

C2
i

)
6

∑d
i=1

(
nC1
• − n

C1
i

)
· nC2

(i(0i))

i
j

i 0
1 2

3 4
5 6

1
∑d

i=1 n
C1
i · n

C2
0↑•↑i 5:6 σ

[∑d
i=1 n

G′
i · nG′′

(•(0i))

]
2 nC1

0 · n
C2
•↑ ↑•

3 nC1
0 ·

∑d
i=1 n

C1
i · n

C2
•↑i

4
∑d

i=1

(
nC1
• − n

C1
i

)
· nC2

(0i)↑i
5 ]

∑d
i=1 n

C1
[•(0i)] · n

C2
i

6
∑d

i=1 n
C1
i · n

C2
(•(0i))

0
i

i j
1 2

3 4
5 6

1
∑d

i=1 n
C1
i · n

C2
•↑i↑0 5:6 ] σ

[
nG′

0 · nG′′

(•(• ))

]
2

∑d
i=1

(
nC1
• − n

C1
i

)
nC2

i↑i↑0

3
∑d

i=1 n
C1
i

(
nC1
• − n

C1
i

)
nC2

i↑0
4

∑d
i=1 n

C1
i · n

C2
(i•)↑0

5 ] nC2
0 ·

∑d
i=1 n

C1
[i(i•)]

6 nC1
0 · n

C2
(•(• ))

i
0

i j
1 2

3 4
5 6

1
∑d

i=1 n
C1
i · n

C2
•↑0↑i 5:6 σ

[∑d
i=1 n

G′
i · nG′′

(0(i•))

]
2

∑d
i=1

(
nC1
• − n

C1
i

)
nC2

i↑0↑i

3
∑d

i=1 n
C1
i

(
nC1
• − n

C1
i

)
· nC2

0↑i
4 nC1

0 · n
C2
(• )↑•

5
∑d

i=1 n
C1
[0(i•)] · n

C2
i

6
∑d

i=1 n
C1
i · n

C2
(0(i•))

Figure A.7: Sums used for finding B for the quartet distance calculation.
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Additional Counters and Sums for the
A and B Calculations
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Counter C G

nX
(i(••)) i

j j
i
j j

nX
(i(• )) i

j k
i
j k

nX
(•( )) j

k k
j
k k

Counter

? nX
[i(••)] i

j j

? nX
[i(• )] i

j k

nX
[••] j k

nX
[•( )] j

k k

Counter C

? nC
j↑i

j

i

? nC
i↑j

i
j

? nC
i↑•↑•

i
j

j

? nC
i↑•↑

i
j

k

nC
(• )↑i

j k

i

Counter C

nC
•↑•

j

j

nC
•↑

j
k

nC
(••)↑

j j

k

nC
•↑ ↑

j

k

k

Figure B.1: Illustration of the additional counters used to find A for our variation of the quartet distance
calculation.

Counter C G

? nX
i(ij) i

i j
i
i j

nX
(•(i•)) j

i j
j

i j

nX
(i(i•)) i

i j
i
i j

nX
(•(i )) j

i k
j

i k

? nX
(i(ij)) i

i j
i
i j

Counter

? nX
[•(i•)] j

i j

? nX
[•(i )] j

i k

? nX
[i(ij)] i

i j

Counter C

? nC
(i•)↑•

i j

j

? nC
(i•)↑

i j

k

Counter C

? nC
•↑i↑•

j

i
j

? nC
•↑•↑i

j

j
i

? nC
•↑i↑

j
i

k

? nC
•↑ ↑i

j
k

i

Figure B.2: Illustration of the additional counters used to find B for our variation of the quartet distance
calculation.
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LC
C1

C2
G1 G2 C G

IC

L→C CC→C GG→G C→G IG→C
Counter nC

− nC
− nG

− nG
− nC

−
Common 0 nC1

_ + nC2
_ nG1

_ + nG2
_ nG

_
nX

(i(••)) nC
[i(••)]

nX
(i(• )) nC

[i(• )]
Common 0 nC1

_ + nC2
_ + f_(C1, C2) nG1

_ + nG2
_ + g_(G1, G2) + g_(G2, G1) nC

_ nG
_

? nX
[i(••)]

(
nC1

[••] −
(nC1

i
2
))
nC2

i +
(∑d

j=1,j 6=i n
C1
j · n

C2
j↑i

)
+ nC1

i

(
nC2

(••) − n
C2
(ii)

)
nG′

i

(
nG′′

(••) − n
G′′

(ii)

)
? nX

[i(• )]

(
nC1

[• ] − n
C1
[i•]

)
nC2

i +
(∑d

k=1,k 6=i n
C1
k (nC2

•↑i − n
C2
k↑i)

)
+ nC1

i

(
nC2

(• ) − n
C2
(i•)

)
nG′

i

(
nG′′

(• ) − n
G′′

(i•)

)
 = f_(C1, C2)

g_(G′, G′′)

Common 0 nC1
_ + nC2

_ + f_(C1, C2) not defined not defined 0
? nC

j↑i nC1
j · n

C2
i

? nC
i↑j nC1

i · n
C2
j

? nC
i↑•↑• nC1

i

(
nC2
•↑• − n

C2
i↑i

)
+
(∑d

j=1,j 6=i n
C1
i↑j · n

C2
j

)
? nC

i↑•↑ nC1
i

(
nC2
•↑ − n

C2
i↑• − n

C2
•↑i

)
+
(∑d

j=1,j 6=i n
C1
i↑j

(
nC2
• − n

C2
i − n

C2
j

))
nC

(• )↑i

(
nC1

(• ) − n
C1
(i•)

)
· nC2

i

nX
(•( )) =

∑d
i=1 n

X
(i(••))

nX
[••] =

∑d
i=1

(nX
i
2
)

nX
[•( )] =

∑d
i=1 n

X
[i(••)]

nC
•↑• =

∑d
i=1 n

C
i↑i

nC
•↑ =

∑d
i=1 n

C
i↑•

nC
(••)↑ =

∑d
i=1 n

C
(ii)↑•

nC
•↑ ↑ =

∑d
i=1 n

C
•↑i↑i

Figure B.3: Additional counters used for the A calculation of our variation of the quartet distance calculation.

Case T1 T2 CC→C
C1

C2 GG→G
G1 G2

αβ
i i j j

j j
i i
1 2

3 4
5

1,2
∑d

i=1 n
C1
i · n

C2
i↑•• 3:45 σ

[∑d
i=1 n

G′

(ii)

(
nG′′
•• − nG′′

ii

)]
3
∑d

i=1
(nC1

i
2
) (
nC2
•• − n

C2
ii

)
34:5,35:4 σ

[∑d
i=1 n

G′

i(••) · n
G′′
i

]
4,5

∑d
i=1 n

C1
i · n

C2
i(••)

αγ
i i j j

j
j

i i
1 2

3 4
5 6

1,2
∑d

i=1 n
C1
i · n

C2
i↑•↑• 5:6 σ

[∑d
i=1 n

G′
i · nG′′

(i(••))

]
3
∑d

i=1
(nC1

i
2
) (
nC2
•↑• − n

C2
i↑i

)
4
∑d

i=1 n
C1
i · n

C2
(••)↑i

5
∑d

i=1 n
C1
[i(••)] · n

C2
i

6
∑d

i=1 n
C1
i · n

C2
(i(••))

βγ j k
i i

k
j

i i
1 2

3 4
5 6

1,2
∑d

i=1 n
C1
i · n

C2
i↑•↑ 5:6 σ

[∑d
i=1 n

G′
i

(
nG′′

(•( )) − n
G′′

(i(••)) − n
G′′

(•(ii))

)]
3
∑d

i=1
(nC1

i
2
) (
nC2
•↑ − n

C2
i↑• − n

C2
•↑i

)
4
∑d

i=1 n
C1
i

(
nC2

(••)↑ − n
C2
(ii)↑• − n

C2
(••)↑i

)
5
∑d

i=1

(
nC1

[•( )] − n
C1
[i(••)] − n

C1
[•(ii)]

)
nC2

i

6
∑d

i=1 n
C1
i

(
nC2

(•( )) − n
C2
(i(••)) − n

C2
(•(ii))

)

i
i

j k
1 2

3 4
5 6

1,2
∑d

i=1 n
C1
i

(
nC2
•↑ ↑ − n

C2
i↑•↑• − n

C2
•↑i↑i

)
5:6 σ

[∑d
i=1 n

G′
i · nG′′

(i(• ))

]
3
∑d

i=1

(
nC1

[• ] − n
C1
[i•]

)
· nC2

i↑i
4
∑d

i=1 n
C1
i · n

C2
(• )↑i

5
∑d

i=1 n
C1
[i(• )] · n

C2
i

6
∑d

i=1 n
C1
i · n

C2
(i(• ))

Figure B.4: Additional sums for finding A for our variation of the quartet distance calculation.
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LC
C1

C2
G1 G2 C G

IC

L→C CC→C GG→G C→G IG→C
Counter nC

− nC
− nG

− nG
− nC

−
Common 0 nC1

_ + nC2
_ nG1

_ + nG2
_ + g_(G1, G2) + g_(G2, G1) 0 nG

_
? nX

i(ij) nG′
i · nG′′

(ij)g−(G′, G′′) = {
Common 0 nC1

_ + nC2
_ nG1

_ + nG2
_ nG

_
nX

(•(i•)) nX
[•(i•)]

nX
(i(i•)) nX

[i(i•)]
nX

(•(i )) nX
[•(i )]

? nX
(i(ij)) nX

[i(ij)]
Common 0 nC1

_ + nC2
_ + f_(C1, C2) nG1

_ + nG2
_ + g_(G1, G2) + g_(G2, G1) nC

_ nG
_

? nX
[•(i•)] nC1

i

(
nC2
•↑• − n

C2
i↑i

)
+
(∑d

j=1,j 6=i n
C1
i · n

C1
j · n

C2
j + nC1

j · n
C2
(ij) + nC1

j · n
C2
i↑j

) ∑d
j=1,j 6=i n

G′
j · nG′′

(ij)

? nX
[•(i )] nC1

i

(
nC2
•↑ − n

C2
i↑• − n

C2
•↑i

)
+
(∑d

j=1,j 6=i n
C1
i · n

C1
j ·

(
nC2
•−i−j

)
+
(
nC1
•−i−j

) (
nC2

(ij) + nC2
i↑j

)) ∑d
j=1,j 6=i

(
nG′
•−i−j

)
nG′′

(ij)
? nX

[i(ij)] nC1
i · n

C1
j · n

C2
i + nC1

i · n
C2
(ij) + nC1

i · n
C2
j↑i + nC1

j · n
C2
i↑i nG′

i · nG′′

(ij)

 = f_(C1, C2)
g_(G′, G′′)

Common 0 nC1
_ + nC2

_ + f_(C1, C2) not defined not defined 0
? nC
•↑i↑•

∑d
j=1,j 6=i n

C1
j · n

C2
i↑j + nC1

j↑i · n
C2
j

? nC
•↑•↑i

(∑d
j=1,j 6=i n

C1
j · n

C2
j↑i

)
+
(
nC1
•↑• − n

C1
i↑i

)
nC2

i

? nC
(i•)↑•

∑d
j=1,j 6=i n

C1
(ij) · n

C2
j

? nC
•↑i↑

∑d
j=1,j 6=i n

C1
j

(
nC2

i↑• − n
C2
i↑j

)
+ nC1

j↑i

(
nC2
•−i−j

)
? nC

(i•)↑
∑d

j=1,j 6=i n
C1
(ij)

(
nC2
•−i−j

)
? nC
•↑ ↑i

(∑d
j=1,j 6=i n

C1
j

(
nC2
•↑i − n

C2
j↑i

))
+
(
nC1
•↑ − n

C1
•↑i − n

C1
i↑•

)
nC2

i

Figure B.5: Additional counters used for the B calculation of our variation of the quartet distance calculation.

Case T1 T2 CC→C
C1

C2 GG→G
G1 G2

αβ
i i j j

i j
i j
1 2

3 4
5

1,2
∑d

i=1 n
C1
i · n

C2
•↑i• 3:45 ? σ

[∑d−1
i=1

∑d
j=i+1 n

G′

(ij)n
G′′
ij

]
3 ?

∑d−1
i=1

∑d
j=i+1 n

C1
i · n

C1
j · n

C2
ij 34:5,35:4 σ

[∑d
i=1 n

G′

•(i•)n
G′′
i

]
4,5

∑d
i=1 n

C1
i · n

C2
•(i•)

αγ
i i j j

j
i

i j
1 2

3 4
5 6

1
∑d

i=1 n
C1
i · n

C2
•↑i↑• 5:6 σ

[∑d
j=1 n

G′
j · nG′′

(•(j•))

]
2

∑d
j=1 n

C1
j · n

C2
•↑•↑j

3 ?
∑d

i=1
∑d

j=1,j 6=i n
C1
i · n

C1
j · n

C2
i↑j

4
∑d

i=1 n
C1
i · n

C2
(i•)↑•

5
∑d

j=1 n
C1
[•(j•)] · n

C2
j

6
∑d

j=1 n
C1
j · n

C2
(•(j•))

βγ j k
i i

k
i

i j
1 2

3 4
5 6

1
∑d

i=1 n
C1
i · n

C2
•↑i↑ 5:6 σ

[∑d
k=1 n

G′
k

(
nG′′

(•(• )) − n
G′′

(k(k•)) − n
G′′

(•(k•))

)]
2

∑d
j=1 n

C1
j

(
nC2
•↑•↑ − n

C2
j↑j↑• − n

C2
•↑•↑j

)
3 ?

∑d
i=1

∑d
j=1,j 6=i n

C1
i · n

C1
j

(
nC2

i↑• − n
C2
i↑j

)
4

∑d
i=1 n

C1
i · n

C2
(i•)↑

5 ?
∑d

i=1
∑d

j=1,j 6=i n
C1
[i(ij)]

(
nC2
• − n

C2
i − n

C2
j

)
6 ?

∑d
i=1

∑d
k=1,k 6=i n

C1
k

(
nC2

(i(i•)) − n
C2
(i(ik))

)

i
k

i j
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Figure B.6: Additional sums for finding B for our variation of the quartet distance calculation.
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77



Counter C G

? nX
i• i j k i j k

nX
0i• 0 i j 0 i j

nX
(i• )

i j k i j k

nX
(0i•) 0 i j 0 i j

nX
• 4 i j k i j k

nX
(• 4)

i j k i j k

nX
0• 0 i j 0 i j

nX
(0• ) 0 i j 0 i j

Counter
? nX

[i• ] i j k

nX
[0i•] 0 i j

nX
[• 4] i j k

nX
[0• ] 0 i j

Counter C

? nC
i•↑

ij

k

nC
• ↑i

jk

i

nC
i•↑0

ij
0

nC
0i↑•

0i

j

nC
0•↑i

0j
i

nC
• ↑4

ij

k

Counter C

nC
•↑ 4

i

j k

nC
0•↑

0i

j

nC
0↑•

0
i j

nC
• ↑0

ij

0

nC
•↑0

i
0 j

Figure C.1: Illustration of the additional counters used to find E for the quartet distance calculation.
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Figure C.2: Additional counters used for the E calculation of the quartet distance calculation. Additionally
the counters nX

ij and nC
0↑i• from the B calculation are used.
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Figure C.3: New sums for finding E for the quartet distance calculation.

79



80



Appendix D

Raw Runtime Data
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Appendix E

Guide to the Implementation

To secure availability, the source code has been uploaded to a number of pages on the internet.
The code should be available from one of these locations:

– http://cs.au.dk/~jensjoha/thesis

– http://cs.au.dk/~mholt/thesis

– http://www.zsoft.dk/thesis

– http://www.t-hawk.com/thesis

Compilation and Usage

The Makefile specifies -m64, meaning that all compiles will result in 64-bit programs. This is only
useful when your compiler supports it, and you intend to run the program on a 64-bit system.

To instead compile a 32-bit version, manually edit the file Makefile to state -m32 in the two
places (CFLAGS and LDFLAGS at the top) where it currently specifies -m64. As noted below, you will
further have to specify NO_N4_128=1 for all compiles.

Compilation

Many different variations are supported. The combination is specified at compile-time. We here
list a number of useful commands.

– Triplets:
make CONTRACT_NUM=20000

– Quartets, [1]:
make QUARTETS=1 CONTRACT_NUM=20000

– Quartets, our variation, calculating A and B:
make QUARTETS=1 NOSWAP=1 CONTRACT_NUM=20000

– Quartets, our variation, calculating A and E:
make QUARTETS=1 NOSWAP=1 CONTRACT_NUM=20000 CALCE=1

– Furthermore note that

– CONTRACT_NUM=<?> denotes Q. 20,000 has been specified in the commands above as this
was found to perform the best, see Section 3.2.1.

– Contract can be disabled by specifying NOEXTRACT=1.
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– 128-bit integers are used by default for n4 sums but can be disabled with NO_N4_128=1.
Note that 128-bit integers only works for 64-bit compiles via gcc and similar. By dis-
abling 128-bit integers, only 64-bit integers are used, which limits the size of the input,
the program can meaningfully process, see Section 3.5.

Running the Program

– All compiles can calculate the triplet distance, but only the quartet-compiles can calculate
the quartet distance. Also note that the triplet distance calculation for quartet compiles will
be slower, as they will maintain all counters used for the quartet distance calculation.

– Input trees should be given in the Newick format1 (and the file has to end on the ; character,
i.e. line breaks will not be tolerated).

– Triplets:
<program file> fancy calcTripDist <t1> <t2>

– Quartets:
<program file> fancy calcQuartDist <t1> <t2>

1http://en.wikipedia.org/wiki/Newick_format

90

http://en.wikipedia.org/wiki/Newick_format

	Abstract
	Resumé
	Acknowledgments
	Introduction
	Triplets & Quartets
	A Naive Algorithm

	Previous Work
	Existing Implementations
	Our Results & Overview of the Thesis
	Preliminaries
	Rooting an Unrooted Tree


	Theory
	Dynamic Programming
	Coloring
	Hierarchical Decomposition Tree (HDT)
	Basic Idea
	Construction
	The Cost of Recoloring

	Extract & Contract
	Extracting
	HDT to Rooted Tree
	Contracting

	Counters & Notation
	Quartets
	Improving the Bound
	Memory Usage
	Similarities with Other Algorithms

	Implementation
	Representation of Counters in the HDT
	Extract & Contract
	Different Values for Q
	Not Always Contracting the Non-Largest Children

	Debugging
	Optimizations
	Limitations
	Integer representation
	Recursion depth


	Experiments
	Setup
	Test Input
	Results
	Quartet Distance, Binary Trees
	Quartet Distance, Arbitrary Degree Trees
	Triplet Distance, Binary Trees
	Triplet Distance, Arbitrary Degree Trees
	Memory Usage
	Comparison to Other Implementations

	Summary

	Calculating E Instead of B
	Results when Calculating E
	Summary

	Future work
	Conclusion
	Bibliography
	Counters and Sums from soda13, Corrected
	Additional Counters and Sums for the A and B Calculations
	Counters and Sums for Calculating E
	Raw Runtime Data
	Guide to the Implementation

